Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover ’moving mountains’

11.08.2004


University of Nevada, Reno researchers have for the first time recorded a cluster of nearly 1,600 small earthquakes 20 miles beneath Lake Tahoe -- the world’s second-largest alpine lake. Based on observations from the university’s Nevada Seismic Network and an ultra-sensitive Global Positioning System (GPS) station at Slide Mountain, the researchers believe the quake cluster coincided with an unprecedented 8-millimeter uplifting of the ski resort mountain in the Sierra Nevada.


University research scientists Geoff Blewitt, left, and Ken Smith, check on a GPS antenna atop 9,520-ft. Slide Mountain. The two discovered that a recent cluster of small earthquakes about 20 miles below Lake Tahoe, pictured in the background, have caused the antenna to rise and move northwest approximately 10 millimeters. Photo by Jean Dixon.



"We’ve been watching earthquakes for 30 years in the Tahoe area and have never witnessed an earthquake ’swarm’ anything like this," said Ken Smith, research seismologist at the university’s Nevada Seismological Laboratory and principal author of an article to be published in August in the journal, Science, and on its Science Express Web site on Aug. 5.The deep earthquake activity occurred from Aug. 12, 2003 through Feb. 19, 2004 and then stopped. "We haven’t seen any more deep earthquakes or notable movement at the Slide Mountain GPS station since," Smith said.

Geoff Blewitt, a research geophysicist with the university’s Nevada Bureau of Mines and Geology and co-author of the Science article, added that the centimeter uplift at Slide Mountain "can be explained by the movement of magma about 20 miles deep, which forced several miles of rock apart by about 1 meter."


He added that he and his colleagues believe the rapid growth of this fissure caused the series of earthquakes ? no greater than magnitude 2.2 ? that caused the mountain to rise.

The university’s Nevada Seismological Laboratory operates some 40 real-time seismograph stations in Nevada and eastern California near Lake Tahoe and more than 200 stations throughout the region. Its modern digital seismic instruments can sense the tiniest earthquakes even at depths of 20 miles below the surface.

This network is supported by the U. S. Geological Survey as part of the National Earthquake Hazard Reduction Program, the U. S. Department of Energy, and by the State of Nevada. The university’s network is part of the Advanced National Seismic System. The GPS stations are supported by the National Science Foundation and the U. S. Department of Energy.

The eastern side of the Sierra Nevada is the West’s third most seismically active area behind only Alaska and the San Andreas fault system in California. A number of active faults, capable of earthquakes as large as magnitude 7, have been identified in the Lake Tahoe basin. In fact, university researchers noted that over the past several million years, Lake Tahoe itself has been created by repeated earthquakes on the West Tahoe Fault, which runs along the lake’s bottom and western side.

The eastern front of the Sierra Nevada represents one of the fundamental tectonic boundaries in the United States. The mountain range moves at a rate of about 12 to14 millimeters per year to the northwest. Researchers believe the deep event observed at Lake Tahoe is part of the process of the evolution and westward growth of the Basin and Range Province.

Co-authors of the article, "Moving Mountains and Lower Crustal Earthquakes at Lake Tahoe, California: Evidence for 30 km Deep Magma Injection" are Kenneth Smith, David von Seggern, Geoffrey Blewitt, Leiph Preston, John Anderson (all at University of Nevada, Reno), Brian Wernicke (California Institute of Technology); and James Davis (Harvard Smithsonian Center for Astrophysics).

The University of Nevada, Reno has one of the world’s most respected seismology research and earthquake engineering teams. Its Nevada Seismological Laboratory has overall responsibility for instrumental studies of earthquakes throughout the Silver State. This laboratory serves as a repository of information and a resource for the public on earthquake activity, risks and safety measures in Nevada and adjoining states.

The university’s Nevada Seismic Network’s 200 stations locate over 7,000 earthquakes per year. Reno and Las Vegas are among the 30 urban centers in the nation with the highest estimated annualized earthquake loss, according to the Federal Emergency Management Agency.

The Geodesy Group at the university’s Nevada Bureau of Mines and Geology operates a 36-station GPS network spanning the Central Nevada Seismic Belt and the northern Walker Lane, capable of monitoring sub-millimeter motions of the Earth’s surface, which continuously deforms as stress builds up between earthquakes.

The Geodesy Group is also using the same GPS technology to monitor both the geological stability of the Yucca Mountain region and land subsidence due to ground water extraction in Las Vegas Valley. The group made the recent discovery that global redistribution of surface water is the leading cause for the "wobble" of Earth’s pole of rotation.

In addition, the university’s Center for Civil Engineering Earthquake Research boasts one of the United States’ top earthquake simulation laboratories. The $30 million laboratory includes the nation’s only set of three 50-ton "shake" tables that are able to simulate large earthquakes.

The university is a member of the National Science Foundation’s Network for Earthquake Engineering Simulation, an exclusive group of only 15 universities involved in carrying out research and obtaining information vital for reducing the nation’s vulnerability to catastrophic earthquakes.

Melanie Supersano | EurekAlert!
Further information:
http://www.unr.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>