Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Space-borne Instrument to Track Greenhouse Gases, Ozone Destroyers, and Other Pollutants


This diagram shows the physical phenomena and observing systems present at various heights in the atmosphere. At left is the height axis (kilometers on the left, miles on the right). At right is the temperature at various heights (Celsius on the left, Fahrenheit on the right). The color of the vertical bar shows cooling as one ascends through the troposphere and warming in an ascent through the stratosphere. High-flying planes are found near the tropopause, the cold, dry boundary region between the troposphere and stratosphere. Ozone is most concentrated in the lower stratosphere (bottom left).

A powerful new instrument heading to space this Saturday is expected to send back long-sought answers about greenhouse gases, atmospheric cleansers and pollutants, and the destruction and recovery of the ozone layer. Only a cubic yard in size but laden with technical wizardry, the High-Resolution Dynamic Limb Sounder (HIRDLS) will measure a slew of atmospheric chemicals at a horizontal and vertical precision unprecedented in a multi-year space instrument.

Scientists at the National Center for Atmospheric Research (NCAR), University of Colorado, and University of Oxford developed HIRDLS (pronounced "hurdles") with funding from NASA and United Kingdom sources. The U.S. space agency plans to launch the 21-channel radiometer along with three other instruments July 10 aboard its Aura satellite from Vandenberg Air Force Base in California.

HIRDLS will capture the chemistry and dynamics of four layers of the atmosphere that together span a region 8 to 80 kilometers (5 to 50 miles) above Earth’s surface: the upper troposphere, the tropopause, the stratosphere, and the mesosphere.

Using infrared radiation as its yardstick, the radiometer will look through Earth’s atmosphere toward the planet’s limb, or edge. It will find and measure ten different chemical species, characterize airborne particles known as aerosols, and track thin cirrus clouds, all at a vertical resolution of half a kilometer (a third of a mile) and a horizontal resolution of 50 kilometers (30 miles). The signal-to noise ratio is one tenth that of previous detectors.

"The angular resolution of the instrument’s mirror position is equivalent to seeing a dime eight miles away," says principal investigator John Gille, of NCAR and the University of Colorado.

A few questions HIRDLS data will answer

What are the concentrations of the primary greenhouse gases and their height in the atmosphere? —The answer should reveal where Earth will warm or cool as the global climate changes.

Why does the tropopause exist and what is its role in conveying gases from the troposphere into the stratosphere, especially in the tropics? —Convection was once thought to be the vehicle, but scientists now know warm, rising air normally stops at the frigid, dry tropopause.

Why is the stratosphere, historically dry, now getting wetter? —The answer could shed light on how a changing climate is modifying the atmosphere and how those modifications could in turn feed back into our climate and weather near the ground.

How much ozone is sinking from the stratosphere into the upper troposphere? —The answer will help scientists separate natural ozone pollution from human-made sources and give new information on how the gas is affecting chemistry closer to the ground.

Scientists also expect to see clearly for the first time the dynamic processes that cause water vapor filaments and tendrils to break off and mix with other gases in the troposphere.

Good and bad ozone at different altitudes

At 50 kilometers (30 miles) above the ground, ozone is good: it blocks dangerous ultraviolet radiation and prevents it from harming life and materials at ground level. At 10 kilometers (6 miles), ozone is a greenhouse gas, which is good because the natural greenhouse effect is necessary to warm the planet, but bad if the warming continues to increase at too rapid a rate. At 5 kilometers (3 miles), ozone is a source of the hydroxyl radical, which cleanses the atmosphere of pollutants. But at ground level, ozone is a primary pollutant in smog, causing respiratory problems and damaging trees and crops.

NCAR’s primary sponsor, the National Science Foundation, provided additional support for the research that made HIRDLS possible.

Anatta | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>