Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Space-borne Instrument to Track Greenhouse Gases, Ozone Destroyers, and Other Pollutants

08.07.2004


This diagram shows the physical phenomena and observing systems present at various heights in the atmosphere. At left is the height axis (kilometers on the left, miles on the right). At right is the temperature at various heights (Celsius on the left, Fahrenheit on the right). The color of the vertical bar shows cooling as one ascends through the troposphere and warming in an ascent through the stratosphere. High-flying planes are found near the tropopause, the cold, dry boundary region between the troposphere and stratosphere. Ozone is most concentrated in the lower stratosphere (bottom left).


A powerful new instrument heading to space this Saturday is expected to send back long-sought answers about greenhouse gases, atmospheric cleansers and pollutants, and the destruction and recovery of the ozone layer. Only a cubic yard in size but laden with technical wizardry, the High-Resolution Dynamic Limb Sounder (HIRDLS) will measure a slew of atmospheric chemicals at a horizontal and vertical precision unprecedented in a multi-year space instrument.

Scientists at the National Center for Atmospheric Research (NCAR), University of Colorado, and University of Oxford developed HIRDLS (pronounced "hurdles") with funding from NASA and United Kingdom sources. The U.S. space agency plans to launch the 21-channel radiometer along with three other instruments July 10 aboard its Aura satellite from Vandenberg Air Force Base in California.

HIRDLS will capture the chemistry and dynamics of four layers of the atmosphere that together span a region 8 to 80 kilometers (5 to 50 miles) above Earth’s surface: the upper troposphere, the tropopause, the stratosphere, and the mesosphere.



Using infrared radiation as its yardstick, the radiometer will look through Earth’s atmosphere toward the planet’s limb, or edge. It will find and measure ten different chemical species, characterize airborne particles known as aerosols, and track thin cirrus clouds, all at a vertical resolution of half a kilometer (a third of a mile) and a horizontal resolution of 50 kilometers (30 miles). The signal-to noise ratio is one tenth that of previous detectors.

"The angular resolution of the instrument’s mirror position is equivalent to seeing a dime eight miles away," says principal investigator John Gille, of NCAR and the University of Colorado.

A few questions HIRDLS data will answer

What are the concentrations of the primary greenhouse gases and their height in the atmosphere? —The answer should reveal where Earth will warm or cool as the global climate changes.

Why does the tropopause exist and what is its role in conveying gases from the troposphere into the stratosphere, especially in the tropics? —Convection was once thought to be the vehicle, but scientists now know warm, rising air normally stops at the frigid, dry tropopause.

Why is the stratosphere, historically dry, now getting wetter? —The answer could shed light on how a changing climate is modifying the atmosphere and how those modifications could in turn feed back into our climate and weather near the ground.

How much ozone is sinking from the stratosphere into the upper troposphere? —The answer will help scientists separate natural ozone pollution from human-made sources and give new information on how the gas is affecting chemistry closer to the ground.

Scientists also expect to see clearly for the first time the dynamic processes that cause water vapor filaments and tendrils to break off and mix with other gases in the troposphere.

Good and bad ozone at different altitudes

At 50 kilometers (30 miles) above the ground, ozone is good: it blocks dangerous ultraviolet radiation and prevents it from harming life and materials at ground level. At 10 kilometers (6 miles), ozone is a greenhouse gas, which is good because the natural greenhouse effect is necessary to warm the planet, but bad if the warming continues to increase at too rapid a rate. At 5 kilometers (3 miles), ozone is a source of the hydroxyl radical, which cleanses the atmosphere of pollutants. But at ground level, ozone is a primary pollutant in smog, causing respiratory problems and damaging trees and crops.

NCAR’s primary sponsor, the National Science Foundation, provided additional support for the research that made HIRDLS possible.

Anatta | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>