Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.S.A.’s Built-up Surfaces Equal Ohio in Area

14.06.2004

If all the highways, streets, buildings, parking lots and other solid structures in the 48 contiguous United States were pieced together like a giant jigsaw puzzle, they would almost cover the state of Ohio. That is the result of a study by Christopher Elvidge of the National Oceanic and Atmospheric Administration’s National Geophysical Data Center in Boulder, Colorado, who along with colleagues from several universities and agencies produced the first national map and inventory of impervious surface areas (ISA) in the United States.

As calculated by the researchers, the total impervious surface area of the 48 states and District of Columbia is approximately 112,610 square kilometers [43,480 square miles], and, for comparison, the total area of the state of Ohio is 116,534 square kilometers [44,994 square miles].

The new map is important, because impervious surface areas affect the environment The qualities of impervious materials that make them ideal for construction also create urban heat islands, by reducing heat transfer from Earth’s surface to the atmosphere. The replacement of heavily vegetated areas by ISA reduces sequestration of carbon, which plants absorb from the atmosphere, Elvidge says in the 15 June issue of Eos, published by the American Geophysical Union. Both of these effects can play a role in climate change.

In watersheds, impervious surface areas alter the shape of stream channels, raise the water temperature, and sweep urban debris and pollutants into aquatic environments. These effects are measurable once ten percent of a watershed’s surface area is covered by ISA, Elvidge writes. The consequences of increased ISA include fewer fish and fewer species of fish and aquatic insects, as well as a general degradation of wetlands and river valleys. The impervious surface area of the contiguous United States is already slightly larger than that of its wetlands, which is 98,460 square kilometers [38,020 square miles].

Elvidge notes that few areas have ISA maps, because they are difficult and expensive to create. He used a variety of data sources to produce the map accompanying his article, including nighttime lights observed by satellite, Landsat images, and data on roads from the U.S. Census Bureau, along with aerial photography. He anticipates that this map will be useful to scientists and planners managing conservation and resource allocation, as well as those working on issues of water quality, biodiversity, habitat loss and fragmentation, and climate change.

The population of the United States is increasing by three million persons annually, Elvidge writes. New impervious surface areas are rapidly covering vegetated surfaces, including one million new single family homes and 20,000 kilometers [10,000 miles] of new roads per year. Given these trends, he says, ISA will likely become a more prominent issue in coming years.

The study was funded in part by NASA.

Harvey Leifert | AGU

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>