Fossil trees help understand climate change

Scientists at Bristol University have established the time when mountains first became forested. The timing of upland ‘greening’ has major implications for understanding global temperatures in the past, and will help refine models of present-day climate change.

A unique assemblage of giant fossil trees has been found in 300-million-year-old rocks in Newfoundland, Canada, by Dr Howard Falcon-Lang of Bristol University’s Earth Sciences Department. The fossilised trees represent the oldest upland forests ever documented. They were more than 45m in height and were the ancestors of present-day conifers.

Because vegetation growing at high-altitudes is rarely preserved as fossils, the formation of upland forests has long been the subject of great controversy. Knowing when this happened is highly important because forests accelerate the rate at which rock is weathered, which in turn removes huge amounts of carbon dioxide from the atmosphere. This causes global cooling – a reverse of the greenhouse effect.

Dr Falcon Lang said: ‘Models of the Earth’s climatic evolution have long indicated that a dramatic cooling event occurred in the Early Carboniferous Period, the age immediately preceding the formation of the Newfoundland rocks. It seems likely that the evolution of upland forests during Carboniferous times accelerated the rate that the mountains were weathering, removing carbon dioxide from the atmosphere, and leading to the observed global cooling.’

The fossil trees were alive at a time when North America and Europe lay together on the equator and were covered by steamy tropical rainforests – the remains of which occur today as vast coal deposits. A huge Himalayan-scale mountain belt is known to have stretched across this ancient tropical zone from France to Texas. The Newfoundland rocks were deposited in a tiny basin right in the heart of this mountain belt.

The greening of upland environments exerted an enormous impact on the global carbon cycle and climate. Knowing the timing of when they formed helps understand the huge contribution trees in upland areas make to the Earth’s climate.

The work of Dr Falcon-Lang and his Masters student, Arden Bashforth from the Memorial University of Newfoundland, will be reported in the May issue of GEOLOGY.

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors