Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Guiding gas exploration: U-M research offers inexpensive tool

22.04.2004


Freshwater from melting ice sheets set the stage several thousand years ago for production of natural gas along the margins of sedimentary basins.



Now researchers at the University of Michigan and Amherst College are reading chemical signatures of water in those areas to pinpoint places where gas is most likely to be found. Their most recent work is described in a paper published in the May/June issue of the Geological Society of America Bulletin.

Natural gas forms when organic materials trapped in sediments decompose. This can happen when the materials are exposed to high temperatures, producing thermogenic gas, or when bacteria break down the organic matter and, through the process of methanogenesis, produce microbial gas.


Finding and exploiting microbial gas deposits, which account for as much as 20 percent of the world’s natural gas resources, is "becoming more and more important," said U-M doctoral student Jennifer McIntosh, lead author of the paper. "And if you’re exploring for microbial gas, you need to know what areas have been affected by methanogenesis, because that’s how the microbial gas is produced."

McIntosh and coauthors Lynn Walter, U-M professor of geological sciences, and Anna Martini, assistant professor of geology at Amherst College, studied Antrim Shale deposits in the Michigan Basin, a deep depression filled with sediments that date back to the Paleozoic Era. While thermogenic gas forms far below the surface in the centers of such depressions, microbial gas is produced along the shallow edges. In previous work, the researchers showed that freshwater seeping into basin edges from melting ice sheets made it possible for methanogenesis to occur. "The fluids in the Michigan basin are some of the most saline fluids in the world," McIntosh said. "When freshwater penetrated into these basin margins, it suppressed the salinity and created an environment that was conducive to methanogenesis within organic-rich black shales."

In the current work, the research team compared the chemistry of water from wells drilled in the deeper center of the basin with that of water from wells at the edges. Their analysis not only provided further evidence that melting ice sheets made it possible for methane-producing bacteria to inhabit the shallow deposits, but also showed that methanogenesis has significantly changed water chemistry in those areas.

"We see large decreases in the calcium-to-magnesium and calcium-to-strontium ratios in high bicarbonate waters associated with microbial gas deposits, indicating methanogenesis caused calcite to precipitate within the Antrim Shale," McIntosh said. "So you can use the elemental chemistry of these shale wells to be able to tell if there was methanogenesis, and that guides gas companies in terms of where to explore for microbial gas. It’s a relatively inexpensive analytical tool, compared to other methods that have been used, such as stable isotope chemistry."

The method has potential not just in Michigan, but also in the Illinois basin and in other parts of the world that have similar black shale deposits, said McIntosh. "There are organic-rich deposits in many basins throughout the world, and a lot of these have been covered by continental ice sheets, so these may represent areas where freshwater has penetrated into basins and microbial gas has been generated." To explore that idea, McIntosh compiled water chemistry data from basins in Africa, Asia and North America. "I was able to see similar trends in the water chemistry in other areas with microbial gas deposits, showing how important microbial processes may be in changing the fluid chemistry within the earth’s crust," she said.


###
The research was funded in part by the Petroleum Research Fund, administered by the American Chemical Society, and by the Gas Research Institute.

Nancy Ross Flanigan | EurekAlert!
Further information:
http://www.umich.edu/~newsinfo
http://www.geo.lsa.umich.edu/dept/faculty/walter/
http://www-personal.umich.edu/~jmcintos/

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

Rochester scientists discover gene controlling genetic recombination rates

23.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>