Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Guiding gas exploration: U-M research offers inexpensive tool


Freshwater from melting ice sheets set the stage several thousand years ago for production of natural gas along the margins of sedimentary basins.

Now researchers at the University of Michigan and Amherst College are reading chemical signatures of water in those areas to pinpoint places where gas is most likely to be found. Their most recent work is described in a paper published in the May/June issue of the Geological Society of America Bulletin.

Natural gas forms when organic materials trapped in sediments decompose. This can happen when the materials are exposed to high temperatures, producing thermogenic gas, or when bacteria break down the organic matter and, through the process of methanogenesis, produce microbial gas.

Finding and exploiting microbial gas deposits, which account for as much as 20 percent of the world’s natural gas resources, is "becoming more and more important," said U-M doctoral student Jennifer McIntosh, lead author of the paper. "And if you’re exploring for microbial gas, you need to know what areas have been affected by methanogenesis, because that’s how the microbial gas is produced."

McIntosh and coauthors Lynn Walter, U-M professor of geological sciences, and Anna Martini, assistant professor of geology at Amherst College, studied Antrim Shale deposits in the Michigan Basin, a deep depression filled with sediments that date back to the Paleozoic Era. While thermogenic gas forms far below the surface in the centers of such depressions, microbial gas is produced along the shallow edges. In previous work, the researchers showed that freshwater seeping into basin edges from melting ice sheets made it possible for methanogenesis to occur. "The fluids in the Michigan basin are some of the most saline fluids in the world," McIntosh said. "When freshwater penetrated into these basin margins, it suppressed the salinity and created an environment that was conducive to methanogenesis within organic-rich black shales."

In the current work, the research team compared the chemistry of water from wells drilled in the deeper center of the basin with that of water from wells at the edges. Their analysis not only provided further evidence that melting ice sheets made it possible for methane-producing bacteria to inhabit the shallow deposits, but also showed that methanogenesis has significantly changed water chemistry in those areas.

"We see large decreases in the calcium-to-magnesium and calcium-to-strontium ratios in high bicarbonate waters associated with microbial gas deposits, indicating methanogenesis caused calcite to precipitate within the Antrim Shale," McIntosh said. "So you can use the elemental chemistry of these shale wells to be able to tell if there was methanogenesis, and that guides gas companies in terms of where to explore for microbial gas. It’s a relatively inexpensive analytical tool, compared to other methods that have been used, such as stable isotope chemistry."

The method has potential not just in Michigan, but also in the Illinois basin and in other parts of the world that have similar black shale deposits, said McIntosh. "There are organic-rich deposits in many basins throughout the world, and a lot of these have been covered by continental ice sheets, so these may represent areas where freshwater has penetrated into basins and microbial gas has been generated." To explore that idea, McIntosh compiled water chemistry data from basins in Africa, Asia and North America. "I was able to see similar trends in the water chemistry in other areas with microbial gas deposits, showing how important microbial processes may be in changing the fluid chemistry within the earth’s crust," she said.

The research was funded in part by the Petroleum Research Fund, administered by the American Chemical Society, and by the Gas Research Institute.

Nancy Ross Flanigan | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>