Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC study sheds new light on climate-change processes

11.03.2004


A new study from the University of California shows, for the first time, that the deep-ocean circulation system of the north Atlantic, which controls ice-age cycles of cold and warm periods in the Northern Hemisphere, is integrally coupled to salinity levels in the Caribbean Sea.



This research reinforces concerns that global warming, by melting the glacial ice of Greenland, could quickly and profoundly change salinity and temperatures in the north Atlantic Ocean. One consequence might be much colder weather in northern Europe and Britain and perhaps even in eastern Canada and the U.S. northeast.

The study is published by the journal Nature in its online edition today (March 10) and its print edition tomorrow. The authors are graduate student Matthew Schmidt and geology professor Howard Spero of UC Davis, and geology professor David Lea of UC Santa Barbara.


During Earth’s warm periods, like the present one, surface ocean currents transport heat from the tropics to the cool northern latitudes. The new data, a record of Caribbean salinity for the past 120,000 years, show that when the northern hemisphere warmed, Caribbean salinity levels dropped.

The authors hypothesize that elevated Caribbean salinity, which is transported via the Gulf Stream to the north Atlantic, amplifies the heat transport system by increasing the deep-ocean circulation rate. When the North Atlantic cools, Caribbean salinity builds up because the deep ocean circulation drops to a fraction of its previous rate and the Gulf Stream no longer transports salty water away.

If Caribbean salinity helps power the heat-transport system, then what might happen if melting ice from Greenland dilutes the salinity of the north Atlantic at a time when Caribbean salinity is low, like today?

"Our atmospheric and oceanic systems are integrally linked," Spero said. "Unnatural climate perturbations, such as global warming, can impact ocean circulation and nudge the system towards a threshold that could produce an abrupt climatic change."

Spero and Lea have a long collaboration in using chemical analyses of the fossil shells of tiny sea animals, called foraminifera, to reconstruct Earth’s climate.

In their new study, they teamed up with Schmidt, Spero’s Ph.D. student, to analyze fossil foraminifera to reconstruct the rise and fall of the temperature and salinity of the Caribbean Sea throughout the last full ice-age cycle, when huge glaciers reached far south into North America and Europe.

They then compared those salinity cycles with published reconstructions of ice-age oscillations of deep Atlantic Ocean circulation patterns. The correlations were striking.

"I don’t believe the Earth can plummet into an ice age today," Spero said. "But human-caused global warming has the ability to affect climate in ways we haven’t seen before and do it very quickly."

A paper that refers to similar events occurring today was recently published in the journal Nature by an international group of scientists led by Ruth Curry of Woods Hole Oceanographic Institute in Massachusetts.

Curry’s study showed that in the past 50 years, salinity in the tropical Atlantic Ocean has risen and salinity in the north Atlantic has fallen. That is the pattern that Schmidt, Spero and Lea say has led to colder climates in the past. "We present a historical analog to the salinity buildup that is observed in the tropics today by Dr. Curry and others," said Spero and Lea.


The University of California study was funded by the USSSP Schlanger Ocean Drilling Graduate Fellowship and grants from the U.S. National Science Foundation.

Howard Spero | EurekAlert!
Further information:
http://www-geology.ucdavis.edu/faculty/spero.html
http://www.geol.ucsb.edu/faculty/lea/
http://www.joiscience.org/USSSP/default.html

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>