Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UC study sheds new light on climate-change processes


A new study from the University of California shows, for the first time, that the deep-ocean circulation system of the north Atlantic, which controls ice-age cycles of cold and warm periods in the Northern Hemisphere, is integrally coupled to salinity levels in the Caribbean Sea.

This research reinforces concerns that global warming, by melting the glacial ice of Greenland, could quickly and profoundly change salinity and temperatures in the north Atlantic Ocean. One consequence might be much colder weather in northern Europe and Britain and perhaps even in eastern Canada and the U.S. northeast.

The study is published by the journal Nature in its online edition today (March 10) and its print edition tomorrow. The authors are graduate student Matthew Schmidt and geology professor Howard Spero of UC Davis, and geology professor David Lea of UC Santa Barbara.

During Earth’s warm periods, like the present one, surface ocean currents transport heat from the tropics to the cool northern latitudes. The new data, a record of Caribbean salinity for the past 120,000 years, show that when the northern hemisphere warmed, Caribbean salinity levels dropped.

The authors hypothesize that elevated Caribbean salinity, which is transported via the Gulf Stream to the north Atlantic, amplifies the heat transport system by increasing the deep-ocean circulation rate. When the North Atlantic cools, Caribbean salinity builds up because the deep ocean circulation drops to a fraction of its previous rate and the Gulf Stream no longer transports salty water away.

If Caribbean salinity helps power the heat-transport system, then what might happen if melting ice from Greenland dilutes the salinity of the north Atlantic at a time when Caribbean salinity is low, like today?

"Our atmospheric and oceanic systems are integrally linked," Spero said. "Unnatural climate perturbations, such as global warming, can impact ocean circulation and nudge the system towards a threshold that could produce an abrupt climatic change."

Spero and Lea have a long collaboration in using chemical analyses of the fossil shells of tiny sea animals, called foraminifera, to reconstruct Earth’s climate.

In their new study, they teamed up with Schmidt, Spero’s Ph.D. student, to analyze fossil foraminifera to reconstruct the rise and fall of the temperature and salinity of the Caribbean Sea throughout the last full ice-age cycle, when huge glaciers reached far south into North America and Europe.

They then compared those salinity cycles with published reconstructions of ice-age oscillations of deep Atlantic Ocean circulation patterns. The correlations were striking.

"I don’t believe the Earth can plummet into an ice age today," Spero said. "But human-caused global warming has the ability to affect climate in ways we haven’t seen before and do it very quickly."

A paper that refers to similar events occurring today was recently published in the journal Nature by an international group of scientists led by Ruth Curry of Woods Hole Oceanographic Institute in Massachusetts.

Curry’s study showed that in the past 50 years, salinity in the tropical Atlantic Ocean has risen and salinity in the north Atlantic has fallen. That is the pattern that Schmidt, Spero and Lea say has led to colder climates in the past. "We present a historical analog to the salinity buildup that is observed in the tropics today by Dr. Curry and others," said Spero and Lea.

The University of California study was funded by the USSSP Schlanger Ocean Drilling Graduate Fellowship and grants from the U.S. National Science Foundation.

Howard Spero | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>