Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unusual mechanism of the Ambrym and Pentecost Islands earthquake in Vanuatu


The Vanuatu island arc, in the South-West Pacific, is 1 700 km long. It corresponds to a convergence zone where the Australian plate is slipping eastwards under the North Fiji Basin, which is part of the Pacific plate, thus generating earthquakes. On 26 November 1999, the central islands of Vanuatu, particularly Ambrym and Pentecost, were strongly shaken by a 7.5 magnitude surface earthquake followed by a tsunami. The earthquake and the many landslips it generated caused 10 deaths and considerable damage.

Immediately after the earthquake, IRD researchers conducted onshore and offshore investigations in order to unravel the tectonic movements and the rupture mechanisms brought into play. The eastern end of Ambrym was uplifted by more than a metre, whereas Pentecost to the North and Paama and Lopévi Islands to the South were not. Such vertical movement was indicated by biological markers in the form of the death of coral colonies and, along the coastline, by the appearance of a white band resulting from desiccation of encrusting red algae. Seismic data revealed the focus to be at the northern point of Ambrym, at about 15 km depth. The amount of uplift observed decreases rapidly towards the West and falls away to nothing a few kilometres from the eastern point of the island. This decrease confirms that the earthquake epicentre was nearby and fairly close to the surface. Moreover, measurement of the co-seismic horizontal movements produced by the earthquake at the different GPS network sites deployed over all the central islands showed that the west point of Ambrym was thrust 35 cm towards the East.

Combined data on aftershock distribution and vertical and horizontal motion revealed a strong thrust movement, with average slip of 6.5 m, of the North Fijian Basin crust under the New Hebrides arc that occurred along a West-dipping North-South surface fault emerging East of Ambrym and Pentecost. Ocean floor mapping along the eastern edges of Ambrym and Pentecost indicated a large fault scarp - 400 m wide, 40 km long and 900 m high - oriented 165° N. This scarp appears to correspond to the surface emergence of a rupture zone involved in the earthquake of 26 November 1999 (1).

The uplift observed at the eastern point of Ambrym appears to fall into a long-term process, begun between a few thousand and several million years B.P. The boundary of the uplift zone coincides with the point on the south-east coast of Ambrym where the fringe lagoon has disappeared. Moreover, the discovery of coral banks at heights of 2 to 10 m on the stretch of coast that suffered this co-seismic uplift suggests that the same thrust fault is reactivated regularly, tracing in this way the East coast of Ambrym and increasing the size of the scarp situated East of the island. Dating of the coral banks was conducted by measuring the Uranium/Thorium ratio present in the corals. From it an estimate was made of an average uplift rate of 3–4 mm per year over the course of the past 8000 years. The research team thus reckoned that the thrust fault scarp East of Ambrym resulted from activity dating back to 15 000 to 60 000 years. The return period of strong earthquakes has been calculated at between 100 and 375 years.

The November 1999 earthquake and the seismic cycle along the zone East of the island arc therefore show the plate to have undergone thrust deformation. Convergence produces thickening of the back-arc crust and continual generation of relief. This is how the islands of Maewo and Pentecost came into being. The thrust zone involved in the central Vanuatu earthquake therefore appears to be an active thrust front, which gradually incorporates fragments of lithosphere from the North Fiji Basin. This situation constitutes a rare example of a back-arc intraplate thrust event involving a thrust front behind an oceanic subduction zone.

Mina Vilayleck – DIC
Translation : Nicholas Flay

Marie Guillaume | alfa
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>