Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers explore the ocean floor with rare instrument

30.12.2003


Trapping carbon dioxide in an icy age


A fish on the ocean floor off California gazes at a sight no human has seen first-hand: a modified Raman spectrometer gathering data on a carbon dioxide sample. Jill Pasteris, Ph.D., Washington University professor of earth and planetary sciences, heads a Washington University group collaborating with researchers at the Monterey Bay Area Research Institute (MBARI) to determine the feasibility of storing the greenhouse gas carbon dioxide on the ocean floor. The Raman spectrometer is the first-ever deployed on the ocean floor.
Courtesy of Monterey Bay Area Research Institute



In collaboration with oceanographers from the Monterey Bay Aquarium Research Institute (MBARI), a team of geologists at Washington University in St. Louis is using a rare instrument on the ocean floor just west of California. One of their earliest projects was to see if it’s possible to capture carbon dioxide from the atmosphere and store it on the ocean floor. The research is supported by the Department of Energy.

The geologists, headed by Jill Pasteris, Ph.D., professor of earth and planetary sciences in Arts & Sciences, and their MBARI colleagues are the first to deploy a Raman spectrometer on the ocean floor. The instrument combines a portable focusing lens with a potent laser to examine minerals, gases and liquids - even seawater itself. Pasteris’ group and their MBARI colleagues are using Raman spectroscopy to see what carbon dioxide in either a pure liquid or a complex solid phase will do on the sea floor. They also are examining the feasibility of synthetically trapping carbon dioxide in solids called clathrate hydrates, ice-like solids that form a cage around gas molecules, such as methane, trapping them and storing them. Such solids occur naturally on the ocean floor. The hope is that someday carbon dioxide can be trapped in a similar way.


"It’s a remotely controlled laboratory on the ocean floor manipulated by a robot and controlled from the research ship above," explained Pasteris. "The Raman signals so far are telling us that we can track the carbon dioxide and tell the different types, gas or liquid, and the spectra also can distinguish clathrate hydrates.

"The ocean floor is still a mysterious place. You can’t get scientists directly on the floor, so you either send them down in miniature subs or operate remotely as the MBARI group does. Ultimately, we want to get more expertise on the mineralogy of the sea floor, and we believe the Raman spectrometer is the best thing going to give on-the-spot analysis and identification."

Pasteris explained her collaborative research at the Geological Society of America annual meeting held Nov. 2-5 in Seattle.

Pasteris and her colleagues John Freeman, Ph.D., and Brigitte Wopenka, Ph.D., Washington University research scientists, are collaborators with oceanographers and engineers at MBARI. In the past they have analyzed the kind of sulfur that unusual bacteria oxidize on the ocean floor for MBARI scientists, again using their specialty, Raman spectroscopy. In the carbon sequestration research, MBARI scientists have dismantled the Raman spectrometer system and placed its components in three pressure-resistant cylinders connected by fiber optic cables. A robotic arm controlled from the research ship manipulates the probe head containing the laser. The laser excites various effects in samples, including what is called the Raman effect. The same lens system used to focus the laser then captures backscattered radiation and routes it to the cylinder with the electronics instrument for analysis.

"The emergence of Global Positioning Systems and remotely operated vehicles such as MBARI employs make the use of our instrumentation in extreme environments more and more feasible," Pasteris said. "We expect to get valuable data on the growth of carbon dioxide clathrate hydrate, the formation of secondary solid and dissolved species, the formation of carbon dioxide-saturated boundary layers in ocean water, and the dissolution of sea-floor minerals, among other information, in future deployments."

She said that hydrothermal vents on the sea floor - a possible site for the origin of life on Earth -- and their attendant bacterial colonies are possible future candidates for DORISS, the deep-ocean Raman in-situ spectrometer system. MBARI scientists are studying ways of downsizing the Raman instrument package so that other instruments can piggyback together with it on the robotic vehicles that are sent to the sea floor.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/553.html

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>