Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers explore the ocean floor with rare instrument

30.12.2003


Trapping carbon dioxide in an icy age


A fish on the ocean floor off California gazes at a sight no human has seen first-hand: a modified Raman spectrometer gathering data on a carbon dioxide sample. Jill Pasteris, Ph.D., Washington University professor of earth and planetary sciences, heads a Washington University group collaborating with researchers at the Monterey Bay Area Research Institute (MBARI) to determine the feasibility of storing the greenhouse gas carbon dioxide on the ocean floor. The Raman spectrometer is the first-ever deployed on the ocean floor.
Courtesy of Monterey Bay Area Research Institute



In collaboration with oceanographers from the Monterey Bay Aquarium Research Institute (MBARI), a team of geologists at Washington University in St. Louis is using a rare instrument on the ocean floor just west of California. One of their earliest projects was to see if it’s possible to capture carbon dioxide from the atmosphere and store it on the ocean floor. The research is supported by the Department of Energy.

The geologists, headed by Jill Pasteris, Ph.D., professor of earth and planetary sciences in Arts & Sciences, and their MBARI colleagues are the first to deploy a Raman spectrometer on the ocean floor. The instrument combines a portable focusing lens with a potent laser to examine minerals, gases and liquids - even seawater itself. Pasteris’ group and their MBARI colleagues are using Raman spectroscopy to see what carbon dioxide in either a pure liquid or a complex solid phase will do on the sea floor. They also are examining the feasibility of synthetically trapping carbon dioxide in solids called clathrate hydrates, ice-like solids that form a cage around gas molecules, such as methane, trapping them and storing them. Such solids occur naturally on the ocean floor. The hope is that someday carbon dioxide can be trapped in a similar way.


"It’s a remotely controlled laboratory on the ocean floor manipulated by a robot and controlled from the research ship above," explained Pasteris. "The Raman signals so far are telling us that we can track the carbon dioxide and tell the different types, gas or liquid, and the spectra also can distinguish clathrate hydrates.

"The ocean floor is still a mysterious place. You can’t get scientists directly on the floor, so you either send them down in miniature subs or operate remotely as the MBARI group does. Ultimately, we want to get more expertise on the mineralogy of the sea floor, and we believe the Raman spectrometer is the best thing going to give on-the-spot analysis and identification."

Pasteris explained her collaborative research at the Geological Society of America annual meeting held Nov. 2-5 in Seattle.

Pasteris and her colleagues John Freeman, Ph.D., and Brigitte Wopenka, Ph.D., Washington University research scientists, are collaborators with oceanographers and engineers at MBARI. In the past they have analyzed the kind of sulfur that unusual bacteria oxidize on the ocean floor for MBARI scientists, again using their specialty, Raman spectroscopy. In the carbon sequestration research, MBARI scientists have dismantled the Raman spectrometer system and placed its components in three pressure-resistant cylinders connected by fiber optic cables. A robotic arm controlled from the research ship manipulates the probe head containing the laser. The laser excites various effects in samples, including what is called the Raman effect. The same lens system used to focus the laser then captures backscattered radiation and routes it to the cylinder with the electronics instrument for analysis.

"The emergence of Global Positioning Systems and remotely operated vehicles such as MBARI employs make the use of our instrumentation in extreme environments more and more feasible," Pasteris said. "We expect to get valuable data on the growth of carbon dioxide clathrate hydrate, the formation of secondary solid and dissolved species, the formation of carbon dioxide-saturated boundary layers in ocean water, and the dissolution of sea-floor minerals, among other information, in future deployments."

She said that hydrothermal vents on the sea floor - a possible site for the origin of life on Earth -- and their attendant bacterial colonies are possible future candidates for DORISS, the deep-ocean Raman in-situ spectrometer system. MBARI scientists are studying ways of downsizing the Raman instrument package so that other instruments can piggyback together with it on the robotic vehicles that are sent to the sea floor.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/553.html

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>