Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR model shows decrease in global dust by 2100

09.12.2003


One of the first global-scale simulations of dust and climate from preindustrial times to the year 2100 projects a worldwide decrease in airborne dust of 20–63% by the end of this century. The computer model studies show less wind, more moisture, and enhanced vegetation in desert areas as carbon dioxide increases over the next century, keeping more of the world’s dust on the ground. Coauthor Natalie Mahowald of the National Center for Atmospheric Research presented the results this week at the American Geophysical Union’s annual meeting in San Francisco.



"Reductions in global dust levels could have a profound impact on future climate predictions," says Mahowald. Dust helps to lower global temperature by reflecting sunlight, as well as by depositing iron in the ocean and thus fertilizing marine organisms that remove carbon dioxide from the atmosphere.

Mahowald and Chao Luo (University of California, Santa Barbara) combined NCAR’s global Climate System Model with other software specifically tailored to simulate dust under a variety of climate regimes. The climate changes are driven primarily by an increase in atmospheric carbon dioxide from 280 parts per million in 1890 (preindustrial) to 500 ppm by 2090--a scenario considered reasonable by the Intergovernmental Panel on Climate Change.


The NCAR simulation shows decreasing winds and increasing moisture across arid, low-lying regions such as the Sahara, which produce much of the world’s dust. It also includes the process through which a gradual increase in atmospheric carbon dioxide may stimulate photosynthesis of plants in arid regions, which in turn would reduce the extent of unvegetated areas and the dust they produce.

Mahowald and Luo examined six different scenarios for the interaction of plants and climate across each of three decades: 1880–1889 (preindustrial), 1990-1999, and 2090–2099. For the six scenarios, the decrease in extent of desert dust sources in 2090–2099 compared to 1990–1999 ranges from 0 to 39 percent. The decrease in how much dust gets entrained into the atmosphere is even more dramatic: from 20 to 63 percent, depending on the scenario.

The wide variation among scenarios highlights the uncertainty in this new area of research, says Mahowald. She believes that climate assessments such as those from the Intergovernmental Panel on Climate Change may be underestimating both the magnitude and the uncertainty of dust’s global impact on climate.

"There is substantial spread in the model projections for climate close to large arid regions such as the Sahel," says Mahowald. "It is very difficult to predict whether particular regions will get wetter or drier."


The research was funded by NASA and the National Science Foundation, NCAR’s primary sponsor.

Anatta | EurekAlert!
Further information:
http://www.ucar.edu/ucar/

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>