Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sand ripples taller on Mars

04.11.2003


Mars is kind of like Texas: things are just bigger there. In addition to the biggest canyon and biggest volcano in the solar system, Mars has now been found to have sand ripples twice as tall as they would be on Earth.

Initial measurements of some of the Red Planet’s dunes and ripples using stereo-images from the Mars Orbiter Camera onboard the Mars Global Surveyor have revealed ripple features reaching almost 20 feet high and dunes towering at 300 feet.

One way to imagine the taller dimension of ripples on Mars is to visualize sand ripples on Earth, then stretch out the vertical dimension to double height, without changing the horizontal dimension.



"They do seem higher in relation to ripples on Earth," said Kevin Williams of the Smithsonian National Air and Space Museum. Williams will be presenting this latest insight into the otherworldly scale of Marscapes on Monday, Nov. 3 at the annual meeting of the Geological Society of America in Seattle, WA.

Ripples are common on Mars and usually found in low-lying areas and inside craters, says Williams. On Earth they tend to form in long parallel lines from sand grains being pushed by water or air at right angles to the ripple lines. Dunes, on the other hand, are formed when grains of sand actually get airborne and "saltate" (a word based on the Latin verb "to jump"). That leads to cusp-shaped, star-shaped, and other dune arrangements that allow materials to pile sand much higher.

How exactly Martian dunes and ripples form is still unknown, says Williams, since the images from space give us no clues to the grain sizes or whether they are migrating or moving in any way. Though there are Viking spacecraft images from almost 30 years ago to compare with, the images do not have the resolution to confirm whether ripples have moved much in that time. For now, the dimensions of ripple-forms on Mars are the only indications of whether they are large ripples or small dunes. Williams’ results came about from the advantageous combination of image parameters to get the first height measurements of these ripple-like features at the limit of image resolution.

According to Williams, it’s likely the doubled heights of Mars ripples relative to their spacing is made possible by the same thing that makes Mars’ volcanoes so tall: lower gravity. With about one-third the gravity of Earth, sand, silt, and dust can theoretically stack up higher before gravity causes a slope failure.

However, other differences could play roles in making these large piles of sand as well. "It could also be from different wind speeds, air densities or other factors," said Williams. Mars has a perennially subfreezing, very thin atmosphere in which global dust storms have been known to obscure the surface from view.

The study of Mars dunes and ripples has been underway since Viking spacecraft images of Mars first revealed such features in the late 1970s and early 1980s, says Williams. The primary difficulty of the work continues to be in discerning the close-up details, like the exact heights of features and grain sizes. As with dunes and ripples on Earth, these wind-blown features could reveal a lot about local and regional weather and wind currents – if more was known about ripple and dune building under the very un-Earthlike conditions of Mars.

So far the only close-encounters humans have ever had with Martian dunes were with the Viking Landers and the Pathfinder mission, which sent the Sojourner rover trundling among Martian boulders. "There were some small dunes in the area of Pathfinder," Williams said.

There are also likely to be ripples or small dunes within range of the far more mobile Mars Exploration Rovers now enroute to the Red Planet, Williams said. The Mars Exploration Rovers, Spirit and Opportunity, are larger and will be able to travel much further than Sojourner, making it more likely they will be taking a closer look at ripples as well as other geological features of Mars.

Ann Cairns | EurekAlert!
Further information:
http://www.geosociety.org/
http://gsa.confex.com/gsa/2003AM/finalprogram/abstract_63965.htm

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>