Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia research sheds light on inter-ocean and ocean-atmosphere dynamics

24.10.2003


Currents connecting Pacific and Indian Oceans are colder and deeper than thought

Scientists at Columbia University’s Lamont-Doherty Earth Observatory have found that currents connecting the Indian and Pacific Oceans are colder and deeper than originally believed. This discovery may one day help climate modelers predict the intensity of the Asian monsoon or El Nino with greater accuracy and with more lead-time than is currently possible.

The findings by Arnold Gordon, R. Dwi Susanto and Kevin Vranes appear in the October 23 issue of the journal Nature. Their work is the first to combine comprehensive temperature and velocity measurements of an ocean current known as the Indonesian throughflow (ITF) with regional wind data to provide a comprehensive picture of how an important piece of the ocean-atmosphere-climate puzzle works.



"Before now, most people thought the ITF was mostly on the surface," said Vranes, a former graduate student at Lamont. "Our work shows that the majority of the water flows in the thermocline about 300m below the surface, which makes the overall average flow colder than assumed."

The ITF is a network of currents that carry tropical Pacific Ocean water into the Indian Ocean through the straits and passages of the Indonesian Archipelago. On average, the ITF flows at a rate of 10 million cubic meters per second (nearly 3 trillion gallons per second), or more than 50 times the average flow of the Amazon River.

The ITF is unique among the world’s inter-ocean currents because it is the only one that exchanges tropical waters between two oceans-all other ocean interchanges occur in the extreme northern or southern latitudes, where the water is already very cold. As a result, the ITF is thought to be an important factor in governing the exchange of heat between the Indian and Pacific Oceans and, consequently, between the oceans and the atmosphere.

"The ocean may very well act as a pace maker to the El Nino and the Asian monsoon," said Gordon, the lead author on the study. "Which means we might one day be able to predict the intensity of the monsoon a year ahead of time by monitoring the Indonesian throughflow."

Previously, scientists thought most of the water moving between the Pacific and the Indian Ocean did so on or near the surface, where water temperatures hover around 75°F (24°C). However, using two long-term measuring stations moored in Indonesia’s Makassar Strait, Gordon and the other researchers examined water flow, temperature and salinity from the surface of the strait to the bottom between December 1996 and June 1997. They found that the bulk of the water passing through the strait, which funnels more than 90 percent of the ITF, flowed well below the surface where it could not be warmed by the atmosphere. As a result, it averaged about 59°F (15°C).

Gordon and the others then examined regional wind patterns for the same period. They found that prevailing winds from January to February and again between May and June blow large rafts of buoyant fresh water into areas that effectively block surface water from contributing to the ITF. This, they believe, forces the overall flow to run much deeper and colder than previously thought.

"Before the heat transfer between the Pacific and Indian Oceans was essentially a guess," said Gordon. "Now we have data."

Mary Tobin | EurekAlert!
Further information:
http://www.ldeo.columbia.edu
http://www.earth.columbia.edu

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
17.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Scientists predict a new superhard material with unique properties

18.06.2018 | Materials Sciences

Squeezing light at the nanoscale

18.06.2018 | Physics and Astronomy

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>