Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Behavior of arctic ocean ridge confounds predictions; May lead to new insights into crust formation

26.06.2003


The discovery that an ocean ridge under the Arctic ice cap is unexpectedly volcanically active and contains multiple hydrothermal vents may cause scientists to modify a decades-long understanding of how ocean ridges work to produce the Earth’s crust.



The new results, which come from a study of the Gakkel Ridge, one of the slowest spreading ridges on Earth, have broad implications for the understanding of the globe-encircling mid-ocean ridge system where melting of the underlying mantle creates the ocean floor.

In two articles appearing in the June 26 edition of the journal Nature, scientists supported by the National Science Foundation (NSF) and Deutsche Forschungsgemeinschaft (DFG) present striking new results obtained during a nine-week research cruise that lasted from August to October of 2001. NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion.


In general, fast-spreading ocean ridges, where the Earth’s crust is produced, are volcanically very active. So scientists on the Arctic Mid-Ocean Ridge Expedition (AMORE) expected the Gakkel, where the spreading rate is one centimeter (.39 inches) per year, to exhibit little, if any, volcanic activity. The spreading rate on the Gakkel is about 20 times slower than that of more-frequently studied ocean ridges, such as the East Pacific Rise.

The Gakkel extends 1770 kilometers (1100 miles) from north of Greenland to Siberia. It is the deepest and most remote portion of the global mid-ocean ridge system. Because the spreading rate decreases progressively towards Siberia, "we expected that the amount of melting and magma production would decrease as we worked our way from Greenland towards the east," said Peter Michael, the AMORE chief scientist from the University of Tulsa.

Instead, the very first sampling station brought up fresh volcanic rock, and the new map published in Nature shows large young volcanoes dominating the part of the ridge nearest Greenland.

"By contrast, the central portions of the ridge showed virtually no volcanism and large faults as pieces of the Earth’s mantle were emplaced directly on the sea floor," noted Henry Dick, who specializes in mantle materials. Even larger volcanic edifices appeared farther to the east.

Scientists aboard the Healy, a U.S. Coast Guard icebreaker specially equipped for research, and a companion vessel, the German research icebreaker, the PFS Polarstern, achieved several scientific "firsts."

They obtained high-resolution, well-navigated maps of the entire portion of the ridge, collected thousands of samples by dredging the sea floor, explored for regional anomalies in the water column that would indicate the amount and location of deep hydrothermal vents surrounded by ecosystems that thrive in the absence of sunlight.

Michael noted that the results obtained at sea continually surprised the research team, which was co-led by Henry Dick, of the Woods Hole Oceanographic Institution, and Charles Langmuir of Harvard University.

Based on the picture the Gakkel data painted, factors other than spreading rate must be taken into account when characterizing the likelihood of a given area’s volcanic activity.

"It’s an interconnected multi-variate system," said Michael. "The level of volcanic activity was higher than that predicted from the spreading rate and did not vary continuously as the spreading rate decreased. The chemical composition and temperature of the mantle that melts to form the magma must also be of substantial importance" to the process of ridge formation.

This is most apparent at the slowest spreading rates.

"At the slowest spreading rates, small changes in the other factors have more dramatic effects, making their importance more visible," noted Langmuir.

The research team, which included more than 30 scientists from U.S. and German research institutions, based their conclusions on the remarkably detailed map of the sea floor and on 200 samples taken on average every five kilometers (3.1 miles) along the ridge.

"To our great surprise, sampling from both vessels in the ice was straightforward," said Langmuir, " and this permitted three to four times more sample recovery than planned. We were able to obtain a regional perspective similar to what has been possible for ridges nearer the equator."

"Our sampling strategy allowed us to cruise along each part of the ridge twice," Michael added. "We were also measuring the chemistry of the rocks in the laboratories aboard the ship. We used that chemistry plus the new bathymetric maps to guide sampling on our second pass."

In the same issue, the European research team reports seismic and magnetic data that indicate the crust along the ridge is extremely thin. That confirms inferences made from gravity data collected by submarine as part of the SCICEX program, an NSF-funded survey of the Arctic Ocean floor.

The Gakkel cruise was the first major research voyage for the Healy.

Michael said the new Gakkel Ridge data highlight how important it is to continue the physical exploration of the planet.

"What we found could not be extrapolated from decades of previous studies of the ocean ridge system," he said. "It shows that there is still much to be discovered from exploratory science, and testing hypotheses in new regions. Discovery often happens when we put ourselves in conditions where we are likely to be surprised."


NSF Program Officer: Jane Dionne, (703) 292-8030, jdionne@nsf.gov

Principal Investigators:

Peter Michael, University of Tulsa, (918) 631-3017, pjm@utulsa.edu
Charles Langmuir, Harvard University, langmuir@eps.harvard.edu
Robert Mitchell, Harvard University, (617) 780-9465, Robert_Mitchell@harvard.edu


The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Receive official National Science Foundation news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Peter West | National Science Foundation
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/news/press/01/pr0193.htm
http://www.nsf.gov/od/lpa/news/press/01/pr0166.htm

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>