Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Behavior of arctic ocean ridge confounds predictions; May lead to new insights into crust formation

26.06.2003


The discovery that an ocean ridge under the Arctic ice cap is unexpectedly volcanically active and contains multiple hydrothermal vents may cause scientists to modify a decades-long understanding of how ocean ridges work to produce the Earth’s crust.



The new results, which come from a study of the Gakkel Ridge, one of the slowest spreading ridges on Earth, have broad implications for the understanding of the globe-encircling mid-ocean ridge system where melting of the underlying mantle creates the ocean floor.

In two articles appearing in the June 26 edition of the journal Nature, scientists supported by the National Science Foundation (NSF) and Deutsche Forschungsgemeinschaft (DFG) present striking new results obtained during a nine-week research cruise that lasted from August to October of 2001. NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion.


In general, fast-spreading ocean ridges, where the Earth’s crust is produced, are volcanically very active. So scientists on the Arctic Mid-Ocean Ridge Expedition (AMORE) expected the Gakkel, where the spreading rate is one centimeter (.39 inches) per year, to exhibit little, if any, volcanic activity. The spreading rate on the Gakkel is about 20 times slower than that of more-frequently studied ocean ridges, such as the East Pacific Rise.

The Gakkel extends 1770 kilometers (1100 miles) from north of Greenland to Siberia. It is the deepest and most remote portion of the global mid-ocean ridge system. Because the spreading rate decreases progressively towards Siberia, "we expected that the amount of melting and magma production would decrease as we worked our way from Greenland towards the east," said Peter Michael, the AMORE chief scientist from the University of Tulsa.

Instead, the very first sampling station brought up fresh volcanic rock, and the new map published in Nature shows large young volcanoes dominating the part of the ridge nearest Greenland.

"By contrast, the central portions of the ridge showed virtually no volcanism and large faults as pieces of the Earth’s mantle were emplaced directly on the sea floor," noted Henry Dick, who specializes in mantle materials. Even larger volcanic edifices appeared farther to the east.

Scientists aboard the Healy, a U.S. Coast Guard icebreaker specially equipped for research, and a companion vessel, the German research icebreaker, the PFS Polarstern, achieved several scientific "firsts."

They obtained high-resolution, well-navigated maps of the entire portion of the ridge, collected thousands of samples by dredging the sea floor, explored for regional anomalies in the water column that would indicate the amount and location of deep hydrothermal vents surrounded by ecosystems that thrive in the absence of sunlight.

Michael noted that the results obtained at sea continually surprised the research team, which was co-led by Henry Dick, of the Woods Hole Oceanographic Institution, and Charles Langmuir of Harvard University.

Based on the picture the Gakkel data painted, factors other than spreading rate must be taken into account when characterizing the likelihood of a given area’s volcanic activity.

"It’s an interconnected multi-variate system," said Michael. "The level of volcanic activity was higher than that predicted from the spreading rate and did not vary continuously as the spreading rate decreased. The chemical composition and temperature of the mantle that melts to form the magma must also be of substantial importance" to the process of ridge formation.

This is most apparent at the slowest spreading rates.

"At the slowest spreading rates, small changes in the other factors have more dramatic effects, making their importance more visible," noted Langmuir.

The research team, which included more than 30 scientists from U.S. and German research institutions, based their conclusions on the remarkably detailed map of the sea floor and on 200 samples taken on average every five kilometers (3.1 miles) along the ridge.

"To our great surprise, sampling from both vessels in the ice was straightforward," said Langmuir, " and this permitted three to four times more sample recovery than planned. We were able to obtain a regional perspective similar to what has been possible for ridges nearer the equator."

"Our sampling strategy allowed us to cruise along each part of the ridge twice," Michael added. "We were also measuring the chemistry of the rocks in the laboratories aboard the ship. We used that chemistry plus the new bathymetric maps to guide sampling on our second pass."

In the same issue, the European research team reports seismic and magnetic data that indicate the crust along the ridge is extremely thin. That confirms inferences made from gravity data collected by submarine as part of the SCICEX program, an NSF-funded survey of the Arctic Ocean floor.

The Gakkel cruise was the first major research voyage for the Healy.

Michael said the new Gakkel Ridge data highlight how important it is to continue the physical exploration of the planet.

"What we found could not be extrapolated from decades of previous studies of the ocean ridge system," he said. "It shows that there is still much to be discovered from exploratory science, and testing hypotheses in new regions. Discovery often happens when we put ourselves in conditions where we are likely to be surprised."


NSF Program Officer: Jane Dionne, (703) 292-8030, jdionne@nsf.gov

Principal Investigators:

Peter Michael, University of Tulsa, (918) 631-3017, pjm@utulsa.edu
Charles Langmuir, Harvard University, langmuir@eps.harvard.edu
Robert Mitchell, Harvard University, (617) 780-9465, Robert_Mitchell@harvard.edu


The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Receive official National Science Foundation news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Peter West | National Science Foundation
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/news/press/01/pr0193.htm
http://www.nsf.gov/od/lpa/news/press/01/pr0166.htm

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>