Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Behavior of arctic ocean ridge confounds predictions; May lead to new insights into crust formation

26.06.2003


The discovery that an ocean ridge under the Arctic ice cap is unexpectedly volcanically active and contains multiple hydrothermal vents may cause scientists to modify a decades-long understanding of how ocean ridges work to produce the Earth’s crust.



The new results, which come from a study of the Gakkel Ridge, one of the slowest spreading ridges on Earth, have broad implications for the understanding of the globe-encircling mid-ocean ridge system where melting of the underlying mantle creates the ocean floor.

In two articles appearing in the June 26 edition of the journal Nature, scientists supported by the National Science Foundation (NSF) and Deutsche Forschungsgemeinschaft (DFG) present striking new results obtained during a nine-week research cruise that lasted from August to October of 2001. NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion.


In general, fast-spreading ocean ridges, where the Earth’s crust is produced, are volcanically very active. So scientists on the Arctic Mid-Ocean Ridge Expedition (AMORE) expected the Gakkel, where the spreading rate is one centimeter (.39 inches) per year, to exhibit little, if any, volcanic activity. The spreading rate on the Gakkel is about 20 times slower than that of more-frequently studied ocean ridges, such as the East Pacific Rise.

The Gakkel extends 1770 kilometers (1100 miles) from north of Greenland to Siberia. It is the deepest and most remote portion of the global mid-ocean ridge system. Because the spreading rate decreases progressively towards Siberia, "we expected that the amount of melting and magma production would decrease as we worked our way from Greenland towards the east," said Peter Michael, the AMORE chief scientist from the University of Tulsa.

Instead, the very first sampling station brought up fresh volcanic rock, and the new map published in Nature shows large young volcanoes dominating the part of the ridge nearest Greenland.

"By contrast, the central portions of the ridge showed virtually no volcanism and large faults as pieces of the Earth’s mantle were emplaced directly on the sea floor," noted Henry Dick, who specializes in mantle materials. Even larger volcanic edifices appeared farther to the east.

Scientists aboard the Healy, a U.S. Coast Guard icebreaker specially equipped for research, and a companion vessel, the German research icebreaker, the PFS Polarstern, achieved several scientific "firsts."

They obtained high-resolution, well-navigated maps of the entire portion of the ridge, collected thousands of samples by dredging the sea floor, explored for regional anomalies in the water column that would indicate the amount and location of deep hydrothermal vents surrounded by ecosystems that thrive in the absence of sunlight.

Michael noted that the results obtained at sea continually surprised the research team, which was co-led by Henry Dick, of the Woods Hole Oceanographic Institution, and Charles Langmuir of Harvard University.

Based on the picture the Gakkel data painted, factors other than spreading rate must be taken into account when characterizing the likelihood of a given area’s volcanic activity.

"It’s an interconnected multi-variate system," said Michael. "The level of volcanic activity was higher than that predicted from the spreading rate and did not vary continuously as the spreading rate decreased. The chemical composition and temperature of the mantle that melts to form the magma must also be of substantial importance" to the process of ridge formation.

This is most apparent at the slowest spreading rates.

"At the slowest spreading rates, small changes in the other factors have more dramatic effects, making their importance more visible," noted Langmuir.

The research team, which included more than 30 scientists from U.S. and German research institutions, based their conclusions on the remarkably detailed map of the sea floor and on 200 samples taken on average every five kilometers (3.1 miles) along the ridge.

"To our great surprise, sampling from both vessels in the ice was straightforward," said Langmuir, " and this permitted three to four times more sample recovery than planned. We were able to obtain a regional perspective similar to what has been possible for ridges nearer the equator."

"Our sampling strategy allowed us to cruise along each part of the ridge twice," Michael added. "We were also measuring the chemistry of the rocks in the laboratories aboard the ship. We used that chemistry plus the new bathymetric maps to guide sampling on our second pass."

In the same issue, the European research team reports seismic and magnetic data that indicate the crust along the ridge is extremely thin. That confirms inferences made from gravity data collected by submarine as part of the SCICEX program, an NSF-funded survey of the Arctic Ocean floor.

The Gakkel cruise was the first major research voyage for the Healy.

Michael said the new Gakkel Ridge data highlight how important it is to continue the physical exploration of the planet.

"What we found could not be extrapolated from decades of previous studies of the ocean ridge system," he said. "It shows that there is still much to be discovered from exploratory science, and testing hypotheses in new regions. Discovery often happens when we put ourselves in conditions where we are likely to be surprised."


NSF Program Officer: Jane Dionne, (703) 292-8030, jdionne@nsf.gov

Principal Investigators:

Peter Michael, University of Tulsa, (918) 631-3017, pjm@utulsa.edu
Charles Langmuir, Harvard University, langmuir@eps.harvard.edu
Robert Mitchell, Harvard University, (617) 780-9465, Robert_Mitchell@harvard.edu


The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Receive official National Science Foundation news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Peter West | National Science Foundation
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/news/press/01/pr0193.htm
http://www.nsf.gov/od/lpa/news/press/01/pr0166.htm

More articles from Earth Sciences:

nachricht Small- and mid-sized cities particularly vulnerable
29.09.2016 | Universität Stuttgart

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>