Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic seamounts siphon ocean water through the seafloor

06.02.2003


Researchers trace flow over long distances



Researchers have discovered a pair of seamounts on the ocean floor that serve as inflow and outflow points for a vast plumbing system that circulates water through the seafloor. The seamounts are separated by more than 30 miles (52 kilometers).
"One big underwater volcano is sucking in seawater, and the water flows north through the rocks of the seafloor and comes out through another seamount," said Andrew Fisher, an associate professor of Earth sciences at the University of California, Santa Cruz.

Scientists have known for decades that enormous quantities of ocean water circulate through the seafloor, flowing through the porous volcanic rock of the upper oceanic crust. In the process, the water extracts large amounts of heat from the crust, which is warmed by the constant flow of heat out of the Earth’s interior. The mystery has been how the water gets in and out of the crust, most of which is covered by a thick layer of relatively impermeable sediments.



"The problem is that most of the seafloor doesn’t have much exposed rock that would be permeable to water," Fisher said.

There is exposed rock on seamounts, underwater volcanoes that rise up through the sediment layer. The new discovery shows that water can travel long distances through the basaltic rock of the seafloor from one seamount to another. The findings have implications for understanding heat flow through the crust, the chemistry of ocean water, the microbial communities that live within the ocean floor, and the characteristics of subduction zones where oceanic crust dives beneath the continental plates.

Fisher and a team of collaborators from various institutions described their findings in a paper published in the February 6 issue of the journal Nature. Fisher’s coauthors include Michael Hutnak and Abdellah Cherkaoui of UC Santa Cruz; Earl Davis and Robert Macdonald of the Geological Survey of Canada; Volkhard Spiess, Lars Zühlsdorff, and Heiner Villinger of the University of Bremen, Germany; Lizet Christiansen of Johns Hopkins University; K. Michelle Edwards and Keir Becker of the University of Miami; Michael Mottl of the University of Hawaii; and C. Geoff Wheat of the University of Alaska.

The researchers examined an area of the seafloor in the northeast Pacific, about 120 miles (200 kilometers) west of Vancouver Island. Further west is the Juan de Fuca Ridge, where two plates of the oceanic lithosphere are spreading apart. To the east, the Juan de Fuca Plate plunges beneath the edge of the North American Plate.

"We picked this spot on the ridge flank, between the spreading center and the subduction zone, because the sediment cover there is unusually thick and only a few seamounts are exposed. We knew from previous studies that warm water was coming out of one seamount, and we wanted to find where it was going in," Fisher said.

The researchers used a heat-flow probe to map out the temperature patterns within the seafloor. The results showed that cold water is flowing into the seafloor through a large seamount known as Grizzly Bare. The outflow point is a smaller seamount to the north called Baby Bare. Water samples collected from the seafloor between the two seamounts showed progressive changes in the chemistry of the water as it flows northward.

"The surprising thing was that the water goes in 52 kilometers from where it comes out. This shows that the circulation system is connected over very large distances," Fisher said.

The researchers used the change in water chemistry to calculate the rate of flow. Their best estimate is that it takes about 40 to 400 years for water to flow from one seamount to the other.

Now the challenge is to understand how the system works and what causes water to go in at one point and come out at another. Heat flow from inside the Earth appears to be the driving force, Fisher said. Warm water rising out of Baby Bare creates a suction effect that pulls cold water in at Grizzly Bare. A computer simulation showed that the temperature difference is enough to keep the flow going.

"It’s a hydrothermal siphon, like siphoning water through a hose--once it gets going it can maintain itself. The question is, What gets it started?" Fisher said.

One possibility is that discharge is favored at smaller seamounts, where escaping water would lose less heat than it would if it were spread out over a larger area. The initial push could also come from an extreme event, such as an earthquake or a major storm, that causes a change in pressure over one area.

"The driving forces are small, so small perturbations may be enough to get it started," Fisher said.

Fisher and his collaborators have discovered similar systems on the floor of the Pacific near Costa Rica. Identifying discharge sites could be useful to scientists studying the microbial communities recently discovered living in the rocks of the oceanic crust, he said.

"These sites offer little windows into the subsurface, where we can sample the chemistry of the water and study any critters that get blown out along with it," Fisher said.

In addition, understanding the circulation of water through the oceanic crust may shed light on the behavior of subduction zones. When water gets squeezed out of a plate during subduction, it may lubricate the main fault and affect where earthquakes occur. Water that gets subducted deep into the mantle, on the other hand, may contribute to the explosive volcanism seen, for example, at Mount St. Helens and at Costa Rica’s Arenal volcano.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu/

More articles from Earth Sciences:

nachricht Improved monitoring of coral reefs with the HyperDiver
24.08.2017 | Max-Planck-Institut für marine Mikrobiologie

nachricht Hidden river once flowed beneath Antarctic ice
22.08.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>