Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The arctic perennial sea ice could be gone by end of the century


A NASA study finds that perennial sea ice in the Arctic is melting faster than previously thought--at a rate of 9 percent per decade. If these melting rates continue for a few more decades, the perennial sea ice will likely disappear entirely within this century, due to rising temperatures and interactions between ice, ocean and the atmosphere that accelerate the melting process.

Perennial sea ice floats in the polar oceans and remains at the end of the summer, when the ice cover is at its minimum and seasonal sea ice has melted. This year-round ice averages about 3 meters (9.8 feet) in depth, but can be as thick as 7 meters (23 feet).

The study also finds that temperatures in the Arctic are increasing at the rate of 1.2 degrees Celsius (2.2 Fahrenheit) per decade.

Melting sea ice would not affect sea levels, but it could profoundly impact summer shipping lanes, plankton blooms, ocean circulation systems, and global climate.

"If the perennial ice cover, which consists mainly of thick multi-year ice floes, disappears, the entire Arctic Ocean climate and ecology would become very different," said Josefino Comiso, a researcher at NASA’s Goddard Space Flight Center, Greenbelt, Md., who authored the study.

Comiso used satellite data to track trends in minimum Arctic sea ice cover and temperature over the Arctic from 1978 to 2000. Since sea ice does not change uniformly in terms of time or space, Comiso sectioned off portions of the Arctic data and carefully analyzed these sections to determine when ice had reached the minimum for that area each year. The results were compiled to obtain overall annual values of perennial sea ice.

Prior to the complete data provided by satellites, most records came from sparsely located ocean buoys, weather stations, and research vessels.

The rate of decline is expected to accelerate due to positive feedback systems between the ice, oceans and atmosphere. As temperatures in the Arctic rise, the summer ice cover retreats, more solar heat gets absorbed by the ocean, and more ice gets melted by a warmer upper water layer. Warmer water may delay freezing in the fall, leading to a thinner ice cover in the winter and spring, which makes the sea ice more vulnerable to melting in the subsequent summer.

Also, the rise in summer ice temperatures by about 1.2 degrees Celsius (2.2 Fahrenheit) each decade could lengthen the summers, allowing earlier spring thaws and later freeze dates in the fall, causing further thinning and retreat of perennial ice.

Comparing the differences between Arctic sea ice data from 1979 to 1989 and data from 1990 to 2000, Comiso found the biggest melting occurred in the western area (Beaufort and Chukchi Seas) while considerable losses were also apparent in the eastern region (Siberian, Laptev and Kara Seas). Also, perennial ice actually advanced in relatively small areas near Greenland.

In the short term, reduced ice cover would open shipping lanes through the Arctic. Also, massive melts could increase biological productivity, since melt water floats and provides a stable layer conducive to plankton blooms.

Also, both regional and global climate would be impacted, since summer sea ice currently reflects sunlight out to space, cooling the planet’s surface, and warming the atmosphere.

While the latest data came too late to be included in the paper, Comiso recently analyzed the ice cover data up to the present and discovered that this year’s perennial ice cover is the least extensive observed during the satellite era.

The study appears in the late October issue of Geophysical Research Letters, and was funded by NASA’s Cryospheric Sciences Program and the NASA Earth Science Enterprise/Earth Observing System Project.

The mission of NASA’s Earth Science Enterprise is to develop a scientific understanding of the Earth System and its response to natural or human-induced changes to enable improved prediction capability for climate, weather and natural hazards.

Krishna Ramanujan | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>