Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The arctic perennial sea ice could be gone by end of the century

28.11.2002


A NASA study finds that perennial sea ice in the Arctic is melting faster than previously thought--at a rate of 9 percent per decade. If these melting rates continue for a few more decades, the perennial sea ice will likely disappear entirely within this century, due to rising temperatures and interactions between ice, ocean and the atmosphere that accelerate the melting process.



Perennial sea ice floats in the polar oceans and remains at the end of the summer, when the ice cover is at its minimum and seasonal sea ice has melted. This year-round ice averages about 3 meters (9.8 feet) in depth, but can be as thick as 7 meters (23 feet).

The study also finds that temperatures in the Arctic are increasing at the rate of 1.2 degrees Celsius (2.2 Fahrenheit) per decade.


Melting sea ice would not affect sea levels, but it could profoundly impact summer shipping lanes, plankton blooms, ocean circulation systems, and global climate.

"If the perennial ice cover, which consists mainly of thick multi-year ice floes, disappears, the entire Arctic Ocean climate and ecology would become very different," said Josefino Comiso, a researcher at NASA’s Goddard Space Flight Center, Greenbelt, Md., who authored the study.

Comiso used satellite data to track trends in minimum Arctic sea ice cover and temperature over the Arctic from 1978 to 2000. Since sea ice does not change uniformly in terms of time or space, Comiso sectioned off portions of the Arctic data and carefully analyzed these sections to determine when ice had reached the minimum for that area each year. The results were compiled to obtain overall annual values of perennial sea ice.

Prior to the complete data provided by satellites, most records came from sparsely located ocean buoys, weather stations, and research vessels.

The rate of decline is expected to accelerate due to positive feedback systems between the ice, oceans and atmosphere. As temperatures in the Arctic rise, the summer ice cover retreats, more solar heat gets absorbed by the ocean, and more ice gets melted by a warmer upper water layer. Warmer water may delay freezing in the fall, leading to a thinner ice cover in the winter and spring, which makes the sea ice more vulnerable to melting in the subsequent summer.

Also, the rise in summer ice temperatures by about 1.2 degrees Celsius (2.2 Fahrenheit) each decade could lengthen the summers, allowing earlier spring thaws and later freeze dates in the fall, causing further thinning and retreat of perennial ice.

Comparing the differences between Arctic sea ice data from 1979 to 1989 and data from 1990 to 2000, Comiso found the biggest melting occurred in the western area (Beaufort and Chukchi Seas) while considerable losses were also apparent in the eastern region (Siberian, Laptev and Kara Seas). Also, perennial ice actually advanced in relatively small areas near Greenland.

In the short term, reduced ice cover would open shipping lanes through the Arctic. Also, massive melts could increase biological productivity, since melt water floats and provides a stable layer conducive to plankton blooms.

Also, both regional and global climate would be impacted, since summer sea ice currently reflects sunlight out to space, cooling the planet’s surface, and warming the atmosphere.

While the latest data came too late to be included in the paper, Comiso recently analyzed the ice cover data up to the present and discovered that this year’s perennial ice cover is the least extensive observed during the satellite era.

The study appears in the late October issue of Geophysical Research Letters, and was funded by NASA’s Cryospheric Sciences Program and the NASA Earth Science Enterprise/Earth Observing System Project.

The mission of NASA’s Earth Science Enterprise is to develop a scientific understanding of the Earth System and its response to natural or human-induced changes to enable improved prediction capability for climate, weather and natural hazards.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/2002/1122seaice.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>