Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saharan Dust Storms Sustain Life In Atlantic Ocean

21.07.2008
Research at the University of Liverpool has found how Saharan dust storms help sustain life over extensive regions of the North Atlantic Ocean.

Working aboard research vessels in the Atlantic, scientists mapped the distribution of nutrients including phosphorous and nitrogen and investigated how organisms such as phytoplankton are sustained in areas with low nutrient levels.

They found that plants are able to grow in these regions because they are able to take advantage of iron minerals in Saharan dust storms. This allows them to use organic or ‘recycled’ material from dead or decaying plants when nutrients such as phosphorous – an essential component of DNA – in the ocean are low.

Professor George Wolff, from the University’s Department of Earth and Ocean Sciences, explains: “We found that cyanobacteria – a type of ancient phytoplankton – are significant to the understanding of how ocean deserts can support plant growth. Cyanobacteria need nitrogen, phosphorous and iron in order to grow. They get nitrogen from the atmosphere, but phosphorous is a highly reactive chemical that is scarce in sea water and is not found in the Earth’s atmosphere. Iron is present only in tiny amounts in sea water, even though it is one of the most abundant elements on earth.

“Our findings suggest that Saharan dust storms are largely responsible for the significant difference between the numbers of cyanobacteria in the North and South Atlantic. The dust fertilises the North Atlantic and allows phytoplankton to use organic phosphorous, but it doesn’t reach the southern regions and so without enough iron, phytoplankton are unable to use the organic material and don’t grow as successfully.”

Professor Ric Williams, co-author of the research, added: “The Atlantic is often referred to as an ‘ocean desert’ because many nutrients, which are essential in plant life cycles, are either scarce or are only accessible in the darker depths of the ocean. Plants, however, need some sunlight in order to absorb these important nutrients and so can’t always access them from the ocean depths. They therefore need to find the nutrients from elsewhere. Now that we are able to show how cyanobacteria make use of organic material we can understand more clearly how life is sustained in the ocean and why it isn’t an ‘ocean desert.’

“These findings are important because plant life cycles are essential in maintaining the balance of gases in our atmosphere. In looking at how plants survive in this area, we have shown how the Atlantic is able to draw down carbon dioxide from the atmosphere through the growth of photosynthesising plants.”

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk
http://www.liv.ac.uk/newsroom

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>