Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron Isotopes in Lava Lake Point to Possible Ways to Trace Planetary Origins

23.06.2008
A University of Arkansas researcher and his colleagues have found differences in the iron isotope composition of basalts from a lava lake in Hawaii that point to new ways of studying the origins of the earth and other planets.

Fang-Zhen Teng, assistant professor of geosciences and a member of the Arkansas Center for Space and Planetary Sciences, Nicholas Dauphas of the department of geophysical sciences and a member of the Enrico Fermi Institute at the University of Chicago, and Rosalind T. Helz of the U.S. Geological Survey report their findings in the June 20 issue of the journal Science.

The researchers examined iron isotopes in basalt samples from the Kilauea Iki lava lake on the main island of Hawaii. Isotopes have the same chemical properties but different weights, so some processes cause what looks like the same material to behave differently – often separating the two. Such separation can tell scientists something about how the material containing the isotopes formed.

However, until now scientists thought that such isotope fractionation only occurred at low temperatures and with elements of low molecular weight. Because of the heat and iron’s molecular weight, scientists thought that the process that formed basalts did not separate iron isotopes.

“There is a huge dispute on this topic,” Teng said. “Our research shows that there is clearly fractionation.”

Teng likens the change in iron isotopic composition in basalts to the baking of a cake: With a cake, you start out with certain ingredients, but the baking process changes the ingredients and their proportions within the cake. In the same way, the process that makes basalt magma through partial melting of the mantle peridotites, or rocks, changes the iron isotope compositions.

Past studies have examined basalts, but found little or no separation of iron isotopes. However, no one was studying the individual minerals found within a basaltic rock.

“We analyzed not only the whole rocks, but the separate minerals,” Teng said. The minerals examined showed a significant separation of iron isotopes, in contrast to the whole rocks. The researchers looked at olivine crystals, better known as peridot in the jewelry world, which formed and sank as the lava lake cooled.

“This research gives scientists a new tool to investigate the question of planetary differentiation,” said Dauphas. If basalts from the moon or Mars have similar iron isotope separation, it suggests that they formed through heat processes similar to those on Earth. However, if rocks from these planetary bodies do not have iron isotope separation, it suggests that they were formed in a different way.

The next project by Teng, who teaches in the J. William Fulbright College of Arts and Sciences, will be to study the isotopic composition of iron in lunar basalts returned by the Apollo missions.

CONTACT:
Fang-Zhen Teng, assistant professor, geosciences
J. William Fulbright College of Arts and Sciences
(479) 575-4524, fteng@uark.edu
* Cell phone in Beijing, China: (01186) 13718307470

Melissa Lutz Blouin | newswise
Further information:
http://www.uark.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>