Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Further break-up of Wilkins Ice Shelf

16.06.2008
Wilkins Ice Shelf, Antarctica, is further breaking up. After a two month rest period, a new break-up has started and is still continuing, as researchers from the University of Muenster and Bonn report. For the first time a break-up event in Antarctic winter is documented. In March 2008 a spectacularly break-up at the Wilkins Ice Shelf already hit the headlines.

Wilkins Ice Shelf is located on the western side of the Antarctic Peninsula at about 70°S, about 100km south of the southern tip of South America. Dr. Angelika Humbert of the Polar Geophysics Research Group of the University of Muenster and her colleague Dr. Matthias Braun of the Center for Remote Sensing of Land Surfaces of the University of Bonn have monitored the events, which started on 30 May 2008.

The team of researchers is tracking the development in a sensitive region, which connect the Wilkins Ice Shelf to Charcot and Latady Islands, since years by means of satellite images of the European Space Agency (ESA) and the German Aerospace Center (DLR).

The formerly about 15 km wide connection between the islands was reduced in its width to now only about 3 km. Satellite images show on the remaining ice plate an arched fracture, making it most likely that the remaining plate will disrupt completely in the next few days. The consequences for the entire ice shelf are not yet foreseeable.

The newly broken up ice mass was already a year ago littered with small fractures. 'The real damage was done already then' is Angelika Humbert pointing up, who already reported with her colleague about the reasons for the fracturing: buoyancy forces due to different ice thicknesses caused bending stresses in the ice. These led to fractures, which spread abruptly.

Subsequently, the unstable ice is breaking at a later point - as it happened the second time in a few month. Ice shelves on the Antarctic Peninsula are floating on the sea and are sandwiched between a warming ocean and increasing surface air temperatures. A possible connection to the extraordinary warming rates observed along the Antarctic Peninsula may exist by promoting melting processes on the underside of the ice.

The recent break-up shows that melt water, which was long in believed to cause as solely factor ice shelf break-up, played no role in the recent event: in the current Antarctic winter the surface of the Wilkins Ice Shelf is frozen completely.At the moment, the largest stresses in the ice are likely due to ice creep, the deformation of ice under its own weight. These stresses might have drawn the fracture faces apart and caused them to cut through. The break-up was running this time completely different from the February 2008 event: while that time the icebergs were calving directly from the ice front, this time the ice mass is breaking up from the inside out. Small sliver icebergs capsize and push the ice mass in front of it outside.

Norbert Frie | idw
Further information:
http://www.uni-muenster.de/
http://earth.uni-muenster.de/polarhomepage/info.shtml

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>