Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sophisticated Soil Analysis for Improved Land Use

03.06.2008
Researchers investigated different components of variation in soil at diverse scales ranging from the nanoscale to entire biomes in order to improve predictions of soil processes. Scientists used a variety of mathematical approaches to explore patterns of soil properties including water content, water movement, corn yields, and remote sensing data.

Soil variation occurs across multiple geographic scales ranging from vast climatic regions of the Earth to a 50 acre farm field to the molecular world of soil nano-particles in a pinch of soil.

For example, in a forest or an agricultural field, soil properties vary from the summit of a hill down to the base. Within a single soil aggregate that may be less than a quarter inch in diameter, there is a variable distribution of open spaces (soil pores), solids (soil particles), and water and gas molecules, and within each of the elements themselves there is variation, such as different pore shapes and different elemental solids.

Many approaches have been used to examine soil variation at these diverse scales, but there is a common difficulty among methods in separating out random variations from systematic variations. Some of the variation observed in, say, a desert community or a handful of soil is random, but other variation is predictable (systematic) based on variables such as landscape position, climate, or time of the year.

New methodological developments better enable us to separate out these different sources of variation by examining soil variability over a range of scales, which is important for linking soil properties with soil processes. These linkages have important predictive capacities, such as forecasting corn yields based on soil characteristics, or understanding where microorganisms live in soil and how human alteration to certain soil properties affects their livelihood.

Scientists from USDA-ARS-NSTL in Iowa, The University of Tennessee, and E.T.S. Ingenieros Agrónomos in Spain have assembled a collection of 12 papers covering a range of original approaches for assessing soil variability across multiple scales. The papers are published in a special section of the May 2008 issue of Vadose Zone Journal.

A variety of multi-scale methods are described and some authors compared the performance of different approaches. The methodologies employed include a variety of sophisticated mathematical approaches including geostatistics (variance of a property depends upon its position in space) and fractals and multi-fractals (similar patterns at different scales), to name a few. The authors then applied these different multi-scale methods to diverse data sets including soil pore shapes, soil aggregates, water content, rate of water movement, gas fluxes, corn yields, geochemical data, and remote sensing data.

“Understanding the interrelationships between physical, chemical, and biological factors at different scales is essential for research in agriculture, engineering, hydrology, and the environment,” says researcher Dr. Sally Logsdon of the USDA-ARS, National Soil Tilth Laboratory, Ames, IA. “Future research should examine how to better mesh together soil data and predictions across landscape position and time scales.”

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://vzj.scijournals.org/cgi/content/full/7/2/453.

Vadose Zone Journal, http://www.vadosezonejournal.org/ is a unique publication outlet for interdisciplinary research and assessment of the biosphere, with a focus on the vadose zone, the mostly unsaturated zone between the soil surface and the permanent groundwater table. VZJ is a peer-reviewed, international, online journal publishing reviews, original research, and special sections across a wide range of disciplines that involve the vadose zone, including those that address broad scientific and societal issues. VZJ is published by Soil Science Society of America, with Geological Society of America as a cooperator.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit http://www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, opening July 19, 2008 at the Smithsonian's National Museum of Natural History in Washington, DC.

Sara Uttech | newswise
Further information:
http://vzj.scijournals.org/cgi/content/full/7/2/453
http://www.vadosezonejournal.org/
http://www.soils.org

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>