Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sophisticated Soil Analysis for Improved Land Use

03.06.2008
Researchers investigated different components of variation in soil at diverse scales ranging from the nanoscale to entire biomes in order to improve predictions of soil processes. Scientists used a variety of mathematical approaches to explore patterns of soil properties including water content, water movement, corn yields, and remote sensing data.

Soil variation occurs across multiple geographic scales ranging from vast climatic regions of the Earth to a 50 acre farm field to the molecular world of soil nano-particles in a pinch of soil.

For example, in a forest or an agricultural field, soil properties vary from the summit of a hill down to the base. Within a single soil aggregate that may be less than a quarter inch in diameter, there is a variable distribution of open spaces (soil pores), solids (soil particles), and water and gas molecules, and within each of the elements themselves there is variation, such as different pore shapes and different elemental solids.

Many approaches have been used to examine soil variation at these diverse scales, but there is a common difficulty among methods in separating out random variations from systematic variations. Some of the variation observed in, say, a desert community or a handful of soil is random, but other variation is predictable (systematic) based on variables such as landscape position, climate, or time of the year.

New methodological developments better enable us to separate out these different sources of variation by examining soil variability over a range of scales, which is important for linking soil properties with soil processes. These linkages have important predictive capacities, such as forecasting corn yields based on soil characteristics, or understanding where microorganisms live in soil and how human alteration to certain soil properties affects their livelihood.

Scientists from USDA-ARS-NSTL in Iowa, The University of Tennessee, and E.T.S. Ingenieros Agrónomos in Spain have assembled a collection of 12 papers covering a range of original approaches for assessing soil variability across multiple scales. The papers are published in a special section of the May 2008 issue of Vadose Zone Journal.

A variety of multi-scale methods are described and some authors compared the performance of different approaches. The methodologies employed include a variety of sophisticated mathematical approaches including geostatistics (variance of a property depends upon its position in space) and fractals and multi-fractals (similar patterns at different scales), to name a few. The authors then applied these different multi-scale methods to diverse data sets including soil pore shapes, soil aggregates, water content, rate of water movement, gas fluxes, corn yields, geochemical data, and remote sensing data.

“Understanding the interrelationships between physical, chemical, and biological factors at different scales is essential for research in agriculture, engineering, hydrology, and the environment,” says researcher Dr. Sally Logsdon of the USDA-ARS, National Soil Tilth Laboratory, Ames, IA. “Future research should examine how to better mesh together soil data and predictions across landscape position and time scales.”

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://vzj.scijournals.org/cgi/content/full/7/2/453.

Vadose Zone Journal, http://www.vadosezonejournal.org/ is a unique publication outlet for interdisciplinary research and assessment of the biosphere, with a focus on the vadose zone, the mostly unsaturated zone between the soil surface and the permanent groundwater table. VZJ is a peer-reviewed, international, online journal publishing reviews, original research, and special sections across a wide range of disciplines that involve the vadose zone, including those that address broad scientific and societal issues. VZJ is published by Soil Science Society of America, with Geological Society of America as a cooperator.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit http://www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, opening July 19, 2008 at the Smithsonian's National Museum of Natural History in Washington, DC.

Sara Uttech | newswise
Further information:
http://vzj.scijournals.org/cgi/content/full/7/2/453
http://www.vadosezonejournal.org/
http://www.soils.org

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>