Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New geomorphological index created for studying the active tectonics of mountains

30.05.2008
To build a hospital, nuclear power station or a large dam you need to know the possible earthquake risks of the terrain.

Now, researchers from the Universities of Granada and Jaen, alongside scientists from the University of California (Santa Barbara, USA), have developed, based on relief data from the southern edge of the Sierra Nevada, a geomorphological index that analyses land form in relation to active tectonics, applicable to any mountain chain on the planet.

Active tectonics comprise the most up-to-date deformation processes that affect the Earth's crust, resulting in earthquakes or recent deformations in the planet’s faults and folds. This phenomena is analysed in geology research carried out before commencing engineering works.

Depending on the type of project (nuclear power stations or power stations, radioactive storage, natural gas or CO2, large dams and tunnels, hydroelectricity projects...) and the type of earthquake (single or multiple), the time period for evaluating active tectonics varies between 10,000 and 100,000 years for studies prior to beginning construction work.

The study, which is now published in the magazine Geomorphology and is the result of the doctoral thesis of Rachid El Hamdouni, Professor of the Department of Civil Engineering at the University of Granada, defines a new geomorphological index called Relative Active Tectonics Index, which identifies four classes of active tectonics (from low to very high) and uses six geomorphological indicators.

“The main use of this new index is that it establishes a close relationship between this, the land forms, and direct evidence of active faults”, El Hamdouni explained to SINC.

According to José Chacón Montero, Director of the Department of Civil Engineering at the University of Granada and co-author of this research, in Sierra Nevada “areas with ‘high’ and ‘very high’ tectonic activity are areas with precipices, hanging valleys, deformed or hanging alluvial fans or deep and narrow gorges excavated near mountain fronts”.

A seismic map for southern Spain

The indices are calculated with the help of Geographical Information Systems and teledetection programs in large areas which identify geomorphological anomalies possibly related to active tectonics. “This is really useful in southern Spain where studies on active tectonics are not very widely distributed”, Chacón pointed out to SINC.

The study has focused on the Padul-Dúrcal fault and a series of associated fault structures on the edge of the Sierra Nevada, where over the last 30 years seismic activity has been recorded by the Observatory of the Andalusian Institute of Geophysics and Prevention of Seismic Disasters. Chacón explained that the map obtained with the new index depends exclusively on the land forms and divides the area studied into four parts, “of which two thirds of the total area is classed as having high or very high tectonic activity”.

The Sierra Nevada is an Alpine mountain chain “with variable active tectonic gradients caused by the collision of Africa with Europe which has given rise to anticlines aligned from east to west, as well as the transverse extension with variable vertical gradients around 0.5 mm/year in normal faults”, Chacón specified.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>