Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New geomorphological index created for studying the active tectonics of mountains

30.05.2008
To build a hospital, nuclear power station or a large dam you need to know the possible earthquake risks of the terrain.

Now, researchers from the Universities of Granada and Jaen, alongside scientists from the University of California (Santa Barbara, USA), have developed, based on relief data from the southern edge of the Sierra Nevada, a geomorphological index that analyses land form in relation to active tectonics, applicable to any mountain chain on the planet.

Active tectonics comprise the most up-to-date deformation processes that affect the Earth's crust, resulting in earthquakes or recent deformations in the planet’s faults and folds. This phenomena is analysed in geology research carried out before commencing engineering works.

Depending on the type of project (nuclear power stations or power stations, radioactive storage, natural gas or CO2, large dams and tunnels, hydroelectricity projects...) and the type of earthquake (single or multiple), the time period for evaluating active tectonics varies between 10,000 and 100,000 years for studies prior to beginning construction work.

The study, which is now published in the magazine Geomorphology and is the result of the doctoral thesis of Rachid El Hamdouni, Professor of the Department of Civil Engineering at the University of Granada, defines a new geomorphological index called Relative Active Tectonics Index, which identifies four classes of active tectonics (from low to very high) and uses six geomorphological indicators.

“The main use of this new index is that it establishes a close relationship between this, the land forms, and direct evidence of active faults”, El Hamdouni explained to SINC.

According to José Chacón Montero, Director of the Department of Civil Engineering at the University of Granada and co-author of this research, in Sierra Nevada “areas with ‘high’ and ‘very high’ tectonic activity are areas with precipices, hanging valleys, deformed or hanging alluvial fans or deep and narrow gorges excavated near mountain fronts”.

A seismic map for southern Spain

The indices are calculated with the help of Geographical Information Systems and teledetection programs in large areas which identify geomorphological anomalies possibly related to active tectonics. “This is really useful in southern Spain where studies on active tectonics are not very widely distributed”, Chacón pointed out to SINC.

The study has focused on the Padul-Dúrcal fault and a series of associated fault structures on the edge of the Sierra Nevada, where over the last 30 years seismic activity has been recorded by the Observatory of the Andalusian Institute of Geophysics and Prevention of Seismic Disasters. Chacón explained that the map obtained with the new index depends exclusively on the land forms and divides the area studied into four parts, “of which two thirds of the total area is classed as having high or very high tectonic activity”.

The Sierra Nevada is an Alpine mountain chain “with variable active tectonic gradients caused by the collision of Africa with Europe which has given rise to anticlines aligned from east to west, as well as the transverse extension with variable vertical gradients around 0.5 mm/year in normal faults”, Chacón specified.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>