Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Henry Moore sculpture could be re-erected thanks to 21 century science

14.05.2008
A dismantled Henry Moore sculpture could be re-erected in Kensington Gardens, London, thanks to the latest rock engineering techniques, says a team of experts today.

The Arch, a sculpture dismantled 12 years ago due to safety concerns, could be re-erected at its original site on the banks of the Serpentine Lake following a project exploring the use of rock engineering techniques for cultural heritage conservation.

Engineers at Imperial College London, in collaboration with the International Drawing Institute, Glasgow School of Art, and Tate, carried out a detailed analysis of the Arch to see whether engineering computer simulation and analysis techniques could be used to understand and preserve complex artefacts which experience structural problems.

The Arch, a six metre tall sculpture modelled on sheep collar bones joined together, was created in 1980 by Henry Moore and was dismantled into its seven component pieces in 1996 because of structural instabilities which caused it to be unsafe.

In order to allow the sculpture to be preserved and resurrected, the team needed to find out why it was structurally unsound. By testing rock samples and using laser scanning technologies which examined the large dismantled stone blocks, they gathered data which was used to generate 3D computer simulations of the sculpture for analysis.

By modelling how the structural stresses exerted pressures on the Arch, researchers found that its unusual shape, the poor location of the structural joints which held the blocks together, and the use of brittle travertine stone all contributed to its unsteadiness.

Using this information, the team believes that it has devised a new method to allow the sculpture to be held together without compromising its structure. This includes attaching the rock legs and top section together with fibreglass bolts and dowels and placing the structure on a base of specially reinforced concrete.

Dr John Harrison from Imperial College London’s Department of Earth Science and Engineering said:

“Rock engineering techniques are usually used for stabilisation of tunnels and rock slopes, but the basic concepts of understanding how rock behaves when it is subjected to loads are immediately applicable to stone sculptures. We can now apply this knowledge to preserving some of the nation’s most important and historic artworks.”

Dr Angela Geary from the International Drawing Research Institute, The Glasgow School of Art, added:

“We were delighted when the Henry Moore Foundation invited us to study the Arch as a subject for our research. It was a huge practical challenge, but it was very exciting and motivating to be working on such a significant real-world problem.”

Derek Pullen, Head of Sculpture Conservation at Tate, concluded:

“The outcome is a positive one for everyone involved, and our aim is now to expand across a wide range of artefacts from armoury to pottery and painting. Our methods could remove much of the guesswork from planning conservation treatment and could become an indispensable tool in the care of collections.”

The research was funded as part of the Finite Elements with Laser Scanning for mechanical analysis of Sculptural Objects (FELSSO) project by the Arts and Humanities Research Council, the Henry Moore Foundation with assistance also from the Royal Parks. The team is currently waiting for further funding to resurrect the Arch in Kensington Gardens.

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>