Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Henry Moore sculpture could be re-erected thanks to 21 century science

14.05.2008
A dismantled Henry Moore sculpture could be re-erected in Kensington Gardens, London, thanks to the latest rock engineering techniques, says a team of experts today.

The Arch, a sculpture dismantled 12 years ago due to safety concerns, could be re-erected at its original site on the banks of the Serpentine Lake following a project exploring the use of rock engineering techniques for cultural heritage conservation.

Engineers at Imperial College London, in collaboration with the International Drawing Institute, Glasgow School of Art, and Tate, carried out a detailed analysis of the Arch to see whether engineering computer simulation and analysis techniques could be used to understand and preserve complex artefacts which experience structural problems.

The Arch, a six metre tall sculpture modelled on sheep collar bones joined together, was created in 1980 by Henry Moore and was dismantled into its seven component pieces in 1996 because of structural instabilities which caused it to be unsafe.

In order to allow the sculpture to be preserved and resurrected, the team needed to find out why it was structurally unsound. By testing rock samples and using laser scanning technologies which examined the large dismantled stone blocks, they gathered data which was used to generate 3D computer simulations of the sculpture for analysis.

By modelling how the structural stresses exerted pressures on the Arch, researchers found that its unusual shape, the poor location of the structural joints which held the blocks together, and the use of brittle travertine stone all contributed to its unsteadiness.

Using this information, the team believes that it has devised a new method to allow the sculpture to be held together without compromising its structure. This includes attaching the rock legs and top section together with fibreglass bolts and dowels and placing the structure on a base of specially reinforced concrete.

Dr John Harrison from Imperial College London’s Department of Earth Science and Engineering said:

“Rock engineering techniques are usually used for stabilisation of tunnels and rock slopes, but the basic concepts of understanding how rock behaves when it is subjected to loads are immediately applicable to stone sculptures. We can now apply this knowledge to preserving some of the nation’s most important and historic artworks.”

Dr Angela Geary from the International Drawing Research Institute, The Glasgow School of Art, added:

“We were delighted when the Henry Moore Foundation invited us to study the Arch as a subject for our research. It was a huge practical challenge, but it was very exciting and motivating to be working on such a significant real-world problem.”

Derek Pullen, Head of Sculpture Conservation at Tate, concluded:

“The outcome is a positive one for everyone involved, and our aim is now to expand across a wide range of artefacts from armoury to pottery and painting. Our methods could remove much of the guesswork from planning conservation treatment and could become an indispensable tool in the care of collections.”

The research was funded as part of the Finite Elements with Laser Scanning for mechanical analysis of Sculptural Objects (FELSSO) project by the Arts and Humanities Research Council, the Henry Moore Foundation with assistance also from the Royal Parks. The team is currently waiting for further funding to resurrect the Arch in Kensington Gardens.

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>