Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible link found between earthquakes along the Cascadia and San Andreas faults

07.04.2008
Seismic activity on the southern Cascadia Subduction fault may have triggered major earthquakes along the northern San Andreas Fault, according to new research published by the Bulletin of Seismological Society of America (BSSA). The research refines the recurrence rate for the southern portion of the Cascadia fault to approximately every 220 years for the last 3000 years.

Chris Goldfinger, associate professor of marine geology and geophysics at Oregon State University, and colleagues published their results in the April issue of BSSA as part of a special section on the 1906 San Francisco earthquake. BSSA is published by the Seismological Society of America (SSA), which was created in response to the 1906 earthquake.

Using marine sediment cores collected along the northern California seabed, researchers identified 15 turbidites, which are sediment deposits generated by submarine landslides and commonly triggered by earthquakes. The 15 turbidites, including one associated with the great 1906 earthquake, and the corresponding land paleoseismic record establish an average recurrence rate of approximately 200 – 240 years for the San Andreas Fault.

In a parallel study, they found that during the same period, 13 of these 15 San Andreas earthquakes occurred at almost the same time as earthquakes along the southern Cascadia Subduction Zone, which stretches from northern Vancouver Island to northern California. The marine and land paleoseismic record suggest a recurrence rate of approximately 220 years for the southern Cascadia fault, which is substantially shorter than the 600-year cycle suggested by previous research for full ruptures in Cascadia.

The Cascadia earthquakes also preceded the San Andreas earthquakes by an average of 25 to 45 years. “It’s either an amazing coincidence or one fault triggered the other,” said Goldfinger. The generally larger size of the Cascadia earthquakes, and the timing evidence suggests Cascadia may trigger the San Andreas Two seismic events on the San Andreas were apparently not associated with Cascadia, including the 1906 earthquake which followed the previous Cascadia earthquake by approximately 200 years.

Goldfinger and his colleagues collected core samples that cover the past 10,000 years, and the next step involves analyzing this data for further evidence of a corollary relationship between the plate boundary faults for earlier periods of time. “This type of relationship doesn’t just happen accidentally. We expect the temporal relationship, if correct, to show itself over the longer period of time,” said Goldfinger.

Perhaps the most thoroughly studied seismic event, the 1906 quake continues to fascinate seismologists. BSSA’s special section considers the landmark event, which was initiated along the San Andreas Fault just off the San Francisco coast on April 18, 1906. The strong shaking caused widespread damage along the 300 miles of the fault in northern California, reducing much of San Francisco to rubble.

“The directivity of the ruptures, north to south, which is implied by this study, will have significant meaning for seismic hazard models for San Francisco,” said Goldfinger. The 1906 earthquake, which is an exception to the pattern over the past 3000 years, ruptured in both directions, but mostly from south to north.

“Lessons from the 1906 earthquake should apply to similar faults and earthquakes elsewhere,” writes Brad T. Aagaard, a research geophysicist at the USGS Menlo Park and co-author of the introduction to the special section and two papers that focus on ground motion. “As our understanding of earthquakes evolves and the technology to increase our knowledge develops, there is much to be gained by revisiting older events.

In 1906, approximately 600,000 people lived in the greater Bay Area, about 10 percent of today’s population. Today’s cities have high rise buildings, people travel by car, and five major bridges connect the major cities around the San Francisco Bay.

The special section features new research that characterizes the earthquake source, refines assessments of ground shaking that support higher intensities, and explores the possible effects of a repeat of the 1906 earthquake, or similar-sized earthquakes on the San Andreas Fault.

Research by Aagaard et al., demonstrates how the variability in strong shaking over the San Francisco Bay area observed in 1906 can be attributed to the geologic structure and rupture characteristics. More importantly, by considering other possible rupture scenarios, the Aagaard et al., conclude that future large earthquakes along the San Andreas Fault may subject the San Francisco Bay Area to stronger shaking than occurred in the 1906 earthquake.

Nan Broadbent | EurekAlert!
Further information:
http://www.seismosoc.org/

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>