Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible link found between earthquakes along the Cascadia and San Andreas faults

07.04.2008
Seismic activity on the southern Cascadia Subduction fault may have triggered major earthquakes along the northern San Andreas Fault, according to new research published by the Bulletin of Seismological Society of America (BSSA). The research refines the recurrence rate for the southern portion of the Cascadia fault to approximately every 220 years for the last 3000 years.

Chris Goldfinger, associate professor of marine geology and geophysics at Oregon State University, and colleagues published their results in the April issue of BSSA as part of a special section on the 1906 San Francisco earthquake. BSSA is published by the Seismological Society of America (SSA), which was created in response to the 1906 earthquake.

Using marine sediment cores collected along the northern California seabed, researchers identified 15 turbidites, which are sediment deposits generated by submarine landslides and commonly triggered by earthquakes. The 15 turbidites, including one associated with the great 1906 earthquake, and the corresponding land paleoseismic record establish an average recurrence rate of approximately 200 – 240 years for the San Andreas Fault.

In a parallel study, they found that during the same period, 13 of these 15 San Andreas earthquakes occurred at almost the same time as earthquakes along the southern Cascadia Subduction Zone, which stretches from northern Vancouver Island to northern California. The marine and land paleoseismic record suggest a recurrence rate of approximately 220 years for the southern Cascadia fault, which is substantially shorter than the 600-year cycle suggested by previous research for full ruptures in Cascadia.

The Cascadia earthquakes also preceded the San Andreas earthquakes by an average of 25 to 45 years. “It’s either an amazing coincidence or one fault triggered the other,” said Goldfinger. The generally larger size of the Cascadia earthquakes, and the timing evidence suggests Cascadia may trigger the San Andreas Two seismic events on the San Andreas were apparently not associated with Cascadia, including the 1906 earthquake which followed the previous Cascadia earthquake by approximately 200 years.

Goldfinger and his colleagues collected core samples that cover the past 10,000 years, and the next step involves analyzing this data for further evidence of a corollary relationship between the plate boundary faults for earlier periods of time. “This type of relationship doesn’t just happen accidentally. We expect the temporal relationship, if correct, to show itself over the longer period of time,” said Goldfinger.

Perhaps the most thoroughly studied seismic event, the 1906 quake continues to fascinate seismologists. BSSA’s special section considers the landmark event, which was initiated along the San Andreas Fault just off the San Francisco coast on April 18, 1906. The strong shaking caused widespread damage along the 300 miles of the fault in northern California, reducing much of San Francisco to rubble.

“The directivity of the ruptures, north to south, which is implied by this study, will have significant meaning for seismic hazard models for San Francisco,” said Goldfinger. The 1906 earthquake, which is an exception to the pattern over the past 3000 years, ruptured in both directions, but mostly from south to north.

“Lessons from the 1906 earthquake should apply to similar faults and earthquakes elsewhere,” writes Brad T. Aagaard, a research geophysicist at the USGS Menlo Park and co-author of the introduction to the special section and two papers that focus on ground motion. “As our understanding of earthquakes evolves and the technology to increase our knowledge develops, there is much to be gained by revisiting older events.

In 1906, approximately 600,000 people lived in the greater Bay Area, about 10 percent of today’s population. Today’s cities have high rise buildings, people travel by car, and five major bridges connect the major cities around the San Francisco Bay.

The special section features new research that characterizes the earthquake source, refines assessments of ground shaking that support higher intensities, and explores the possible effects of a repeat of the 1906 earthquake, or similar-sized earthquakes on the San Andreas Fault.

Research by Aagaard et al., demonstrates how the variability in strong shaking over the San Francisco Bay area observed in 1906 can be attributed to the geologic structure and rupture characteristics. More importantly, by considering other possible rupture scenarios, the Aagaard et al., conclude that future large earthquakes along the San Andreas Fault may subject the San Francisco Bay Area to stronger shaking than occurred in the 1906 earthquake.

Nan Broadbent | EurekAlert!
Further information:
http://www.seismosoc.org/

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>