Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible link found between earthquakes along the Cascadia and San Andreas faults

07.04.2008
Seismic activity on the southern Cascadia Subduction fault may have triggered major earthquakes along the northern San Andreas Fault, according to new research published by the Bulletin of Seismological Society of America (BSSA). The research refines the recurrence rate for the southern portion of the Cascadia fault to approximately every 220 years for the last 3000 years.

Chris Goldfinger, associate professor of marine geology and geophysics at Oregon State University, and colleagues published their results in the April issue of BSSA as part of a special section on the 1906 San Francisco earthquake. BSSA is published by the Seismological Society of America (SSA), which was created in response to the 1906 earthquake.

Using marine sediment cores collected along the northern California seabed, researchers identified 15 turbidites, which are sediment deposits generated by submarine landslides and commonly triggered by earthquakes. The 15 turbidites, including one associated with the great 1906 earthquake, and the corresponding land paleoseismic record establish an average recurrence rate of approximately 200 – 240 years for the San Andreas Fault.

In a parallel study, they found that during the same period, 13 of these 15 San Andreas earthquakes occurred at almost the same time as earthquakes along the southern Cascadia Subduction Zone, which stretches from northern Vancouver Island to northern California. The marine and land paleoseismic record suggest a recurrence rate of approximately 220 years for the southern Cascadia fault, which is substantially shorter than the 600-year cycle suggested by previous research for full ruptures in Cascadia.

The Cascadia earthquakes also preceded the San Andreas earthquakes by an average of 25 to 45 years. “It’s either an amazing coincidence or one fault triggered the other,” said Goldfinger. The generally larger size of the Cascadia earthquakes, and the timing evidence suggests Cascadia may trigger the San Andreas Two seismic events on the San Andreas were apparently not associated with Cascadia, including the 1906 earthquake which followed the previous Cascadia earthquake by approximately 200 years.

Goldfinger and his colleagues collected core samples that cover the past 10,000 years, and the next step involves analyzing this data for further evidence of a corollary relationship between the plate boundary faults for earlier periods of time. “This type of relationship doesn’t just happen accidentally. We expect the temporal relationship, if correct, to show itself over the longer period of time,” said Goldfinger.

Perhaps the most thoroughly studied seismic event, the 1906 quake continues to fascinate seismologists. BSSA’s special section considers the landmark event, which was initiated along the San Andreas Fault just off the San Francisco coast on April 18, 1906. The strong shaking caused widespread damage along the 300 miles of the fault in northern California, reducing much of San Francisco to rubble.

“The directivity of the ruptures, north to south, which is implied by this study, will have significant meaning for seismic hazard models for San Francisco,” said Goldfinger. The 1906 earthquake, which is an exception to the pattern over the past 3000 years, ruptured in both directions, but mostly from south to north.

“Lessons from the 1906 earthquake should apply to similar faults and earthquakes elsewhere,” writes Brad T. Aagaard, a research geophysicist at the USGS Menlo Park and co-author of the introduction to the special section and two papers that focus on ground motion. “As our understanding of earthquakes evolves and the technology to increase our knowledge develops, there is much to be gained by revisiting older events.

In 1906, approximately 600,000 people lived in the greater Bay Area, about 10 percent of today’s population. Today’s cities have high rise buildings, people travel by car, and five major bridges connect the major cities around the San Francisco Bay.

The special section features new research that characterizes the earthquake source, refines assessments of ground shaking that support higher intensities, and explores the possible effects of a repeat of the 1906 earthquake, or similar-sized earthquakes on the San Andreas Fault.

Research by Aagaard et al., demonstrates how the variability in strong shaking over the San Francisco Bay area observed in 1906 can be attributed to the geologic structure and rupture characteristics. More importantly, by considering other possible rupture scenarios, the Aagaard et al., conclude that future large earthquakes along the San Andreas Fault may subject the San Francisco Bay Area to stronger shaking than occurred in the 1906 earthquake.

Nan Broadbent | EurekAlert!
Further information:
http://www.seismosoc.org/

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>