Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protective Storm in Space - a new explanation for the death of the dinosaurs

04.06.2002


A shower of matter from space millions of years ago could have led to drastic changes in the Earth’s climate, followed by the extinction of life on a massive scale, which also killed off the dinosaurs. This at least is a theory put forward by scientists from the University of Bonn. Normally, the solar wind acts as a shield against showers of cosmic particles, which prevents too many energy-rich particles from raining down on our atmosphere. Since 1997 scientists from Bonn, funded by the German Research Council (Deutsche Forschungsgemeinschaft or DFG), have been examining how and why this gigantic shield works.

They were the undisputed masters of a whole geological era until they suddenly disappeared 65 million years ago. ‘Perhaps Earth just became too damp and too cold for dinosaurs at that time,’ Professor Hans Jörg Fahr from the Bonn Institute of Astrophysics and Extraterrestrial Research surmises. The reason for the sudden change in climate could have been excessive pressure on our cosmic umbrella.

The solar system does not stand still, in fact it orbits the centre of the Milky Way once every 250 million years. In the process it also passes through dense clouds of interstellar matter, which causes problems for the solar wind and thus for the Earth. Whereas the solar wind normally protects the Earth from a hail of interstellar particles like a huge bullet-proof vest, there are then suddenly up to a hundred times more particles raining down into the earth’s atmosphere at enormous speeds. On impact they smash the air molecules into electrically charged fragments. These function as condensation nuclei on which droplets of water form. “The result is dense cloud cover with greater precipitation and sinking temperatures,” says Professor Fahr, who bases his remarks on research worldwide.



Prof. Fahr and his colleagues Dr. Horst Fichtner and Dr. Klaus Scherer have shown that every 60 million years on average the solar system passes through dense clouds of matter, which could trigger off this sort of climate shock. Prof. Fahr adds: ‘At roughly these intervals many species suddenly became extinct.’ Research by other teams which have examined the link between cloud cover and solar activity has shown that cosmic factors could have had a dramatic impact on our climate on several occasions in the past. ‘The less solar activity there is and therefore the less protection there is from the solar wind, the more cosmic particles reach the earth, and the more clouds form on earth,’ is how Prof. Fahr sums up the process.

Experts call the electrically charged particles which our sun emits ‘solar wind’. They race through our solar system at a velocity of up to 800 kilometres per second, with a range extending a hundred times as far as the distance between the Earth and the sun.. ‘Every eleven years the sun’s activity and therefore the solar wind reaches a maximum. At these times, for example, there is an increase in the frequency of the colourful auroras, when particles of the solar wind are captured by the Earth’s magnetic field and are then catapulted into the upper atmosphere, where they make the oxygen glow,’ Dr. Michael Bird from the Institute of Radio Astronomy explains. During particularly active phases, e.g. during big solar eruptions, the shower of particles can even interfere with short-wave reception, disrupt orbiting satellites or even ‘switch off’ whole power stations.

‘In Bonn we are especially interested in how the solar wind reaches its high velocities,’ Dr. Bird explains. ‘These cannot be explained solely by the enormous heat in the sun‘s atmosphere.’ There seems, in other words, to be another source of energy which catapults the particles into space. The hot favourites for Bonn’s astrophysicists are exotic waves of magnetic fields in the corona, the ‘sun’s atmosphere’ which are amplified while they are expanding and then give the particles the necessary momentum. ‘We are tracking these waves by using radio astronomy,’ the US physicist adds.

Incidentally, cosmic weather might also be a decisive factor in the speed of evolution. The cosmic rays from which we are protected by the solar wind are so full of energy that they can change the DNA of living beings. If the solar wind’s shield effect is too weak, i.e. the Earth’s protective mantle is thin, within a short space of time this results in more mutations, which are the driving force of the evolution of life.

Professor Hans Jörg Fahr | alphagalileo

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

Two dimensional circuit with magnetic quasi-particles

22.01.2018 | Physics and Astronomy

Electrical fields drive nano-machines a 100,000 times faster than previous methods

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>