Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lake Mead could be dry by 2021

13.02.2008
There is a 50 percent chance Lake Mead, a key source of water for millions of people in the southwestern U.S., will be dry by 2021 if climate changes as expected and future water usage is not curtailed, a new study finds.

Without Lake Mead and neighboring Lake Powell, the Colorado River system has no buffer to sustain the population of the Southwest through an unusually dry year, or worse, a sustained drought, the study authors say. In such an event, water deliveries would become highly unstable and variable.

The research team concludes that human demand, natural forces such as evaporation, and human-induced climate change are creating a net deficit of nearly 1 million acre-feet of water per year from the Colorado River system that includes Lake Mead and Lake Powell. This amount of water can supply roughly 8 million people. The team's analysis of Federal Bureau of Reclamation records of past water demand and calculations of scheduled water allocations and climate conditions indicate that the system could run dry even if mitigation measures now being proposed are implemented.

A paper detailing these findings has been accepted for publication in Water Resources Research, a journal of the American Geophysical Union, and is accessible via the AGU's web site (see instructions below).

"We were stunned at the magnitude of the problem and how fast it was coming at us," says marine research physicist and study coauthor Tim Barnett of the Scripps Institution of Oceanography of the University of California at San Diego. "Make no mistake, this water problem is not a scientific abstraction, but rather one that will impact each and every one of us that live in the Southwest."

"It's likely to mean real changes to how we live and do business in this region," adds coauthor David Pierce, a climate scientist at Scripps, which is located in La Jolla, California.

The Lake Mead/Lake Powell system includes the stretch of the Colorado River in northern Arizona. Lake Mead straddles the Arizona-Nevada border and Lake Powell is on the Arizona-Utah border. Aqueducts carry water from the system to Las Vegas, Los Angeles, San Diego, and other communities in the Southwest.

Currently the system is only at half capacity because of a recent string of dry years, and the team estimates that the system has already entered an era of deficit.

"When expected changes due to global warming are included as well, currently scheduled depletions are simply not sustainable," Barnett and Pierce write in the paper.

The researchers note that a number of other studies in recent years have estimated that climate change will lead to reductions in runoff to the Colorado River system. Those analyses consistently forecast reductions of between 10 and 30 percent over the next 30 to 50 years, which could affect the water supply of between 12 and 36 million people.

Barnett and Pierce estimate that there is a 10 percent chance that Lake Mead could be dry by 2014. They further predict that there is a 50 percent chance that reservoir levels will drop too low to allow hydroelectric power generation by 2017.

The researchers add that even if water agencies follow their current drought contingency plans, those measures might not be enough to counter natural forces, especially if the region enters a period of sustained drought or if human-induced climate changes occur as currently predicted.

Barnett says that the researchers chose to go with conservative estimates of the situation in their analysis, though the water shortage is likely to be more dire in reality. The team bases its findings on the premise that climate change effects only started in 2007, though most researchers consider human-caused changes in climate to have likely started decades earlier. Barnett and Pierce also base their river flow on averages over the past 100 years, even though it has dropped in recent decades. Over the past 500 years the average annual flow is even less.

"Today, we are at or beyond the sustainable limit of the Colorado system. The alternative to reasoned solutions to this coming water crisis is a major societal and economic disruption in the desert southwest; something that will affect each of us living in the region," the report concludes.

This research was supported under a joint program between UC San Diego and Lawrence Livermore (California) National Laboratory, and by the California Energy Commission.

Peter Weiss | AGU
Further information:
http://scrippsnews.ucsd.edu
http://www.agu.org

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>