Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cross-border partnership to research earthquake activity in Middle East

07.02.2008
One of the world’s most vulnerable areas for earthquakes lies in a region important for Palestinians, Jordanians, and Israelis, around the ancient city of Jericho. A serious earthquake could add to the volatile situation in the Middle East.

Hoping to mitigate the risks, Tel Aviv University seismologist Hillel Wust-Bloch from the Department of Geophysics and Planetary Sciences recently masterminded a new earthquake mapping research partnership between Jordanian, Palestinian, and Israeli scientists.

The four-year project will be the first time that Earth scientists from these three regions have worked together directly, Wust-Bloch believes. In the past, partnerships have usually occurred through a third party, such as the United Nations.

Wust-Bloch’s new project, which includes partners from Al-Balqa University in Jordan, and An Najah University in Nablus, has important implications for improving the region’s stability. Scientists from the three universities, with Tel Aviv University leading the effort, will simultaneously deploy six "seismic microscopes" in the Jericho region, in order to map a 100-square-kilometer area.

Stethoscope for the Earth

With a German colleague, Wust-Bloch has developed nano-scale seismic monitoring techniques, or “seismic microscopes,” to detect tiny failures inside the earth’s crust. “From a scientific point of view, this project is innovative because we are monitoring the seismic activity of a region which is well-known, but we are doing it at much lower thresholds,” he says.

There is no way to predict where and when exactly an earthquake will occur, or what its magnitude might be. But scientists can listen to the earth for small clues, says Wust-Bloch.

The team will meet several times a year to discuss their findings and assess potential hazards in the region, says Wust-Bloch. He surmises that such an earthquake map will be useful for attracting industry and high-tech projects in the Palestinian and Jordanian regions.

So the Chips Won’t Fall

“Companies like Intel won't invest a single dollar in the Jericho region unless the seismic hazard is properly assessed,” says Wust-Bloch. Wust-Bloch also hopes the research will extend to the educational realm. He foresees that the material collected will be presented, in appropriate cultural contexts, to teach people in the region about seismic hazards and what to do when a major earthquake strikes.

Wust-Bloch’s long-term goal is to explore a predicament common to all in order to stabilize the region. He hopes that earthquake research between Palestinians, Jordanians, and Israelis will break down age-old cultural rifts and open the whole region. He realises that a prosperous future for the Palestinians and Jordanians means a better future for Israelis, too.

Local experts will be trained on how to conduct earthquake research in the Palestinian Authority and in Jordan. This will prevent “brain drain,” since scientists from these regions tend to emigrate to Europe, North America, or the Gulf region for work.

“Young Jordanian and Palestinian scientists simply cannot find adequate work in the region,” concludes Wust-Bloch. “Currently, once they are overseas and get their degree, there are too few opportunities for them to come back to.”

It is a shame, believes Wust-Bloch, not to take advantage of an existing pool of bright young scientists familiar with both foreign and local worldviews, who could fulfil the scientific needs of the region as well as helping to bridge cultural differences.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>