Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Paired microbes eliminate methane using sulfur pathway

Anaerobic microbes in the Earth's oceans consume 90 percent of the methane produced by methane hydrates – methane trapped in ice – preventing large amounts of methane from reaching the atmosphere. Researchers now have evidence that the two microbes that accomplish this feat do not simply reverse the way methane-producing microbes work, but use a sulfur compound instead.

"The dominant role anaerobic oxidation of methane plays in regulating marine methane makes it a significant component of the global methane and carbon cycles," the researchers report in the current issue of Environmental Microbiology. "Its importance in these cycles highlights the need to close gaps in the current understanding of the specific interaction between the microbial groups that work in consort to mediate anaerobic oxidation of methane."

In this case, the microbial consortia consist of an Archaea – a single cell organism – that consumes methane for energy and bacteria that reduce sulfates to obtain energy. The assumption has been that these microbes simply use reverse methanogenesis, the process in which methanogenic bacteria produce methane in the first place.

"Our research suggests that methyl sulfide is the intermediary used by these microbes," says Christopher H. House, associate professor of geosciences. "The Archaea take in the methane and produce a methyl sulfide, and then the sulfur-reducing bacteria eat the methyl sulfide and reduced it to sulfide."

The two single-celled organisms that live in the consortia arrange themselves in a cluster of about 100 cells 10 to 15 microns across. The microbes that consume methane are on the inside while those microbes-reducing sulfur are on the outside. These consortia live in the sediments on the ocean bottom around methane seeps.

Understanding how these symbiotic organisms remove methane from the oceans is important because, House notes that without these microbes, the atmospheric temperature would likely be warmer by about 14 degrees Fahrenheit.

House, working with James J. Moran, graduate student in geosciences now at McMaster University; Emily J. Beal, graduate student in geosciences; Jennifer M. Vrentas, a Penn State undergraduate at the time; Katherine Freeman, professor of geosciences, all at Penn State, and Victoria J. Orphan, assistant professor of geobiology, California Institute of Technology, first investigated the assumption that reverse methanogenesis was the method used by the microbes. They provided hydrogen to the consortium and checked to see if methane oxidation decreased. If hydrogen were the interspecies transfer molecule, than an abundance of hydrogen would turn off the methane oxidation.

"We observed a minimal reduction in the rate of methane oxidation, and conclude that hydrogen does not play an interspecies role in anaerobic oxidation of methane," the researchers say.

They then tried the methyl sulfides, methanethiol (methyl mercaptan) and dimethyl sulfide, to see if they reduced methane oxidation. The researchers found that methanethiol reduced oxidation. The researchers also substituted carbon monoxide for methane and found that the Archaea could oxidize that as well and produce these sulfur compounds.

"In climate models, researchers generally only consider the methane produced in bogs and lakes as dominant greenhouse gases," says House. "They do not need to consider ocean methane because these microbes destroy most of it before it is released from the sediments."

A'ndrea Elyse Messer | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>