Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paired microbes eliminate methane using sulfur pathway

21.01.2008
Anaerobic microbes in the Earth's oceans consume 90 percent of the methane produced by methane hydrates – methane trapped in ice – preventing large amounts of methane from reaching the atmosphere. Researchers now have evidence that the two microbes that accomplish this feat do not simply reverse the way methane-producing microbes work, but use a sulfur compound instead.

"The dominant role anaerobic oxidation of methane plays in regulating marine methane makes it a significant component of the global methane and carbon cycles," the researchers report in the current issue of Environmental Microbiology. "Its importance in these cycles highlights the need to close gaps in the current understanding of the specific interaction between the microbial groups that work in consort to mediate anaerobic oxidation of methane."

In this case, the microbial consortia consist of an Archaea – a single cell organism – that consumes methane for energy and bacteria that reduce sulfates to obtain energy. The assumption has been that these microbes simply use reverse methanogenesis, the process in which methanogenic bacteria produce methane in the first place.

"Our research suggests that methyl sulfide is the intermediary used by these microbes," says Christopher H. House, associate professor of geosciences. "The Archaea take in the methane and produce a methyl sulfide, and then the sulfur-reducing bacteria eat the methyl sulfide and reduced it to sulfide."

The two single-celled organisms that live in the consortia arrange themselves in a cluster of about 100 cells 10 to 15 microns across. The microbes that consume methane are on the inside while those microbes-reducing sulfur are on the outside. These consortia live in the sediments on the ocean bottom around methane seeps.

Understanding how these symbiotic organisms remove methane from the oceans is important because, House notes that without these microbes, the atmospheric temperature would likely be warmer by about 14 degrees Fahrenheit.

House, working with James J. Moran, graduate student in geosciences now at McMaster University; Emily J. Beal, graduate student in geosciences; Jennifer M. Vrentas, a Penn State undergraduate at the time; Katherine Freeman, professor of geosciences, all at Penn State, and Victoria J. Orphan, assistant professor of geobiology, California Institute of Technology, first investigated the assumption that reverse methanogenesis was the method used by the microbes. They provided hydrogen to the consortium and checked to see if methane oxidation decreased. If hydrogen were the interspecies transfer molecule, than an abundance of hydrogen would turn off the methane oxidation.

"We observed a minimal reduction in the rate of methane oxidation, and conclude that hydrogen does not play an interspecies role in anaerobic oxidation of methane," the researchers say.

They then tried the methyl sulfides, methanethiol (methyl mercaptan) and dimethyl sulfide, to see if they reduced methane oxidation. The researchers found that methanethiol reduced oxidation. The researchers also substituted carbon monoxide for methane and found that the Archaea could oxidize that as well and produce these sulfur compounds.

"In climate models, researchers generally only consider the methane produced in bogs and lakes as dominant greenhouse gases," says House. "They do not need to consider ocean methane because these microbes destroy most of it before it is released from the sediments."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>