Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regional weather extremes linked to atmospheric variations

23.06.2014

New study shows drought, heat waves and cold spells linked to air flow changes

Variations in high-altitude wind patterns expose particular parts of Europe, Asia and the US to different extreme weather conditions, a new study has shown.

Changes to air flow patterns around the Northern Hemisphere are a major influence on prolonged bouts of unseasonal weather – whether it be hot, cold, wet or dry.

The high altitude winds normally blow from west to east around the planet, but do not follow a straight path. The flow meanders to the north and south, in a wave-like path.

These wave patterns are responsible for sucking either warm air from the tropics, or cold air from the Arctic, to Europe, Asia, or the US. They can also influence rainfall by steering rain-laden storms.

Pioneering new research, carried out by the University of Exeter and the University of Melbourne, has shown that the development of these wave patterns leaves certain Northern Hemisphere regions more susceptible to different types of prolonged, extreme weather.

Dr James Screen, a Mathematics Research Fellow at the University of Exeter and lead author of the study, said: "The impacts of large and slow moving atmospheric waves are different in different places. In some places amplified waves increase the chance of unusually hot conditions, and in others the risk of cold, wet or dry conditions".

The study showed that larger waves can lead to droughts in central North America, Europe and central Asia, and western Asia exposed to prolonged wet spells. It also shows western North America and central Asia are more prone to heat waves, while eastern North America is more likely to experience prolonged outbreaks of cold.

The collaborative study used detailed land-based climate observations to identify episodes of abnormal temperature and rainfall from 1979-2012 and then examined the wave patterns during these events.

Co-author Professor Ian Simmonds, from the School of Earth Sciences at the University of Melbourne, said the weather extremes they examined were month-long heat waves, cold spells, droughts and prolonged wet periods, which occurred over large areas.

He said: "The study revealed that these types of events are strongly related to well-developed wave patterns, and that these patterns increase the chance of heat waves in western North America and central Asia, cold outbreaks in eastern North America, droughts in central North America, Europe and central Asia, and wet spells in western Asia.

"The findings are very important for decision makers in assessing the risk of, and planning for the impacts of, extreme weather events in the future."

###

'Amplified mid-latitude planetary waves favour particular regional weather extremes', by Dr James Screen and Professor Ian Simmonds, is published in Nature Climate Change online on Sunday, June 22.

The study received funding from the Natural Environment Research Council (NERC).

Duncan Sandes | Eurek Alert!

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>