Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rainwater discovered at new depths


University of Southampton researchers have found that rainwater can penetrate below the Earth's fractured upper crust, which could have major implications for our understanding of earthquakes and the generation of valuable mineral deposits.

It had been thought that surface water could not penetrate the ductile crust - where temperatures of more than 300°C and high pressures cause rocks to flex and flow rather than fracture - but researchers, led by Southampton's Dr Catriona Menzies, have now found fluids derived from rainwater at these levels.

Fluids in the Earth's crust can weaken rocks and may help to initiate earthquakes along locked fault lines. They also concentrate valuable metals such as gold. The new findings suggest that rainwater may be responsible for controlling these important processes, even deep in the Earth.

Researchers from the University of Southampton, GNS Science (New Zealand), the University of Otago, and the Scottish Universities Environmental Research Centre studied geothermal fluids and mineral veins from the Southern Alps of New Zealand, where the collision of two tectonic plates forces deeper layers of the earth closer to the surface.

The team looked into the origin of the fluids, how hot they were and to what extent they had reacted with rocks deep within the mountain belt.

"When fluids flow through the crust they leave behind deposits of minerals that contain a small amount of water trapped within them," says Postdoctoral Researcher Catriona, who is based at the National Oceanography Centre. "We have analysed these waters and minerals to identify where the fluids deep in the crust came from.

"Fluids may come from a variety of sources in the crust. In the Southern Alps fluids may flow upwards from deep in the crust, where they are released from hot rocks by metamorphic reactions, or rainwater may flow down from the surface, forced by the high mountains above. We wanted to test the limits of where rainwater may flow in the crust. Although it has been suggested before, our data shows for the first time that rainwater does penetrate into rocks that are too deep and hot to fracture."

Surface-derived waters reaching such depths are heated to over 400°C and significantly react with crustal rocks. However, through testing the researchers were able to establish the water's meteoric origin.

Funding for this research, which has been published in Earth and Planetary Science Letters, was provided by the Natural Environmental Research Council (NERC). Catriona and her team are now looking further at the implications of their findings in relation to earthquake cycles as part of the international Deep Fault Drilling Project, which aims to drill a hole through the Alpine Fault at a depth of about 1km later this year.


Notes to editors

1. "Incursion of meteoric waters into the ductile regime in an active orogen" by Catriona D. Menzies, Damon A. H. Teagle, Dave Craw, Simon C. Cox, Adrian J. Boyce, Craig D. Barrie, and Stephen Roberts is published in Earth and Planetary Science Letters, v. 399, p. 1-13.

2. Picture: The Southern Alps Mountain Range, New Zealand. Rain and snow falling on the mountains percolate to great depths. Photo credit: Simon Cox

3. To arrange interview opportunities with Dr Catriona Menzies, please contact Steven Williams, Tel: 023 8059 2128, email:

4. Through world-leading research and enterprise activities, the University of Southampton connects with businesses to create real-world solutions to global issues. Through its educational offering, it works with partners around the world to offer relevant, flexible education, which trains students for jobs not even thought of. This connectivity is what sets Southampton apart from the rest; we make connections and change the world.


For further information contact: Steven Williams, Media Relations, University of Southampton, Tel: 023 8059 2128, email:

Follow us on twitter:

Like us on Facebook:

Steven Williams | Eurek Alert!
Further information:

Further reports about: Alps Cox Environmental Planetary Zealand discovered fluids fracture penetrate rainwater

More articles from Earth Sciences:

nachricht NASA's Terra satellite sees Typhoon In-fa stretching
24.11.2015 | NASA/Goddard Space Flight Center

nachricht To save the earth, better nitrogen use on a hungrier planet must be addressed
24.11.2015 | Princeton University, Woodrow Wilson School of Public and International Affairs

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

Im Focus: Nanocarriers may carry new hope for brain cancer therapy

Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into...

All Focus news of the innovation-report >>>



Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Siemens Healthcare introduces the Cios family of mobile C-arms

20.10.2015 | Event News

Latest News

Siemens offers concrete solution portfolio for Industrie 4.0 with Digital Enterprise

24.11.2015 | Trade Fair News

Compact, rugged, three-phase power supplies for worldwide use

24.11.2015 | Trade Fair News

Sensor sees nerve action as it happens

24.11.2015 | Life Sciences

More VideoLinks >>>