Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preparing for the flood: Visualizations help communities plan for sea-level rise

20.02.2012
Researchers at the University of British Columbia have produced computer visualizations of rising sea levels in a low-lying coastal municipality, illustrating ways to adapt to climate change impacts such as flooding and storms surges.

The researchers are working with a municipality south of Vancouver, Canada that is surrounded by water on three sides and is expecting the sea-level to rise by 1.2 metres by 2100 – a change that would affect a number of waterfront homes, inland suburban developments, roads and farmland.


The municipality of Delta, B.C. is a low-lying coastal community surrounded by water on three sides. Credit: CALP

Considerable infrastructure has been built below current and projected high water levels, and could be inundated in the event of a dike breach. The images produced show how different adaptation strategies that could be implemented in the municipality and are being used to help make decisions about how to best prepare for the future.

"To me, the visualizations are the only way that you can tell the complete story of climate change and its impacts in a low-lying coastal community," says David Flanders, a UBC research scientist with the Collaborative for Advanced Landscape Planning (CALP), who will present this research at the 2012 Annual Meeting of the American Association for the Advancement of Science (AAAS) in Vancouver on Sunday. "In other words, seeing really is believing in this case."

"It can be hard to mentally grasp what rising sea-levels can mean on the ground but our visualizations give people a glimpse of what their future world will look and feel like in their own backyards. They help community members understand how their quality of life can be affected by climate change, and by the decisions they make to deal with climate impacts."

BACKGROUND

The municipality of Delta, B.C. is in an agricultural region with a population of about 100,000 (Fig. 1). Historically, the municipality has used dykes to protect the land from flooding and tides – a common strategy used by coastal communities.

New provincial guidelines for the construction of new homes have more than doubled the recommended finished floor elevation to compensate for rising high water lines. Similarly, the guidelines for sea dike construction have increased considerably, in some cases suggesting a top-of-wall more than two times their current elevation above mean sea level.

Working with the municipality, Flanders and his colleagues at CALP have created visualizations of sea-level rise in Delta and four alternate scenarios that show different ways Delta could adapt. These were constructed using a cutting-edge 3D geovisualization process that integrates climate modeling scenarios, inundation modeling, Geographic Information Systems (GIS) data, land use and urban design.

Visualizations of higher water levels in Delta portray what would happen to the community if it does nothing to prepare for climate change (Fig. 2).

"Combine the sea-level rise with bigger storms, more wind, more waves and high-tide and that's an enormous amount of water," says Flanders.

The four alternate scenarios show Delta over the next century where the municipality adopts various strategies to prepare for sea-level rise including: raising the dikes ("Hold The Line," Fig. 3); building offshore barrier islands to absorb the impact of incoming storms ("Reinforce and Reclaim," Fig 4); moving parts of the community out of the floodplain and on to higher ground ("Managed Retreat," Fig. 5); and reducing vulnerability through design by raising homes, roads and critical infrastructure above the floodplain ("Build Up," Fig. 6).

The visualizations packages not only show what the region could look at the end of the century but also takes into account other important factors like the cost of each solution for the municipality, the cost to individual property owners, and the trade-offs between protecting roads, habitat, homes, waterfront views and agricultural production.

"What is becoming evident is that there is no single, perfect solution. Each alternative pathway has trade-offs associated with it, and this planning process has been very effective at communicating those trade-offs, and assessing acceptability," says Flanders.

"Communities will have to decide what their priorities are, and likely plan for a mosaic of different solutions, because each neighbourhood has its own set of concerns and its own idea of what will be possible. This visioning process can help inform these kinds of tough decisions that many low-lying communities will have to make over the next 20, 50 and 100 years."

To produce the visualizations, Flanders is working with other landscape planning researchers at CALP, climate scientists on the climate forecasts, coastal engineers who can calculate what water will do during a storm when it slams against the dikes, land-use planners who know current policies and how strategies could potentially roll-out on the ground, and a working group of members of the public. These participants helped to build the scenarios and assess their acceptability.

Flanders and his colleagues have begun to show these visualizations to city planners and engineers, local elected officials, and members of the community. He notes that "many individuals seeing the images for the first time had a very emotional response."

The work borrows from international precedents, but CALP is unique in combining visualization, stakeholder input, and evaluation of results comprehensively in the Delta study.

"Other communities around the globe could gain insight from this on how to address their own local concerns, whether it's sea level rise, forest fire risk, changing snow pack, or other issues."

CONTACT:

David Flanders
Research Scientist, Collaborative for Advanced Landscape Planning
Adjunct Faculty, School of Architecture and Landscape Architecture
Tel: 604.328.3448
Email: david.flanders@ubc.ca
Heather Amos
UBC Public Affairs
Cell: 604.828.3867
Email: heather.amos@ubc.ca
[NB: Flanders is participating in a AAAS news briefing on Sunday, Feb. 19 at 1 p.m. PST at the Vancouver Convention Centre in Room 223-224. He is available for embargoed interviews anytime on Friday morning, Saturday evening at the annual Compass Marine Mixer (6:30 - 9 p.m. at the Pan Pacific Hotel (Chrystal Pavilion); and on Monday. He is available at 604.328.3448 (cell).

Simulated images are available by contacting Heather Amos at heather.amos@ubc.ca or 604.828.3867 (cell) and will be available for download Sunday, Feb. 19 at 1 p.m at: http://www.aaas.ubc.ca/media-resources/photos/

Photos of Flanders are available at: http://www.aaas.ubc.ca/media-resources/photos/. A video of Flanders is available at http://www.aaas.ubc.ca/media-resources/videos/ ]

Heather Amos | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>