Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precipitation declines in Pacific Northwest mountains

03.12.2013
Recent Forest Service studies on high-elevation climate trends in the Pacific Northwest United States show that streamflow declines tie directly to decreases and changes in winter winds that bring precipitation across the region. Scientists believe the driving factors behind this finding relates to natural climate variations and man-made climate change.

Research Hydrologist Charlie Luce, with the Rocky Mountain Research Station's Aquatic Sciences Laboratory in Boise, Idaho, along with cooperators at the University of Idaho and the US Forest Service Northern Region, reflect on the decline of precipitation in the region's mountains for 60 years.

Increasing wildfire area and earlier and lower streamflows have generally been attributed to warming temperatures. "Our research," says Luce, "suggests that an alternative mechanism – decreases in winter winds leading to decreased precipitation – may compound the changes expected from warming alone.

This is important because mountains are a primary water source for the region. Less precipitation leads to reduced runoff for communities, industry and agriculture. Decreased precipitation also exacerbates early snowmelt tied to warming temperatures.

Acknowledging the effects of decreasing precipitation requires changes in how resource specialists approach climate change adaptation for water resources and forest management compared to preparing for increased temperature alone," he said. According to Luce, this may present important implications for changes in mountain precipitation and future water availability for other areas as well.

The American Association for the Advancement of Science is publishing the study, The Missing Mountain Water; Slower Westerlies Decrease Orographic Enhancement in the Pacific Northwest USA, in their Science Journal, available on Nov. 28, 2013. To download a copy and learn more about this study and what it means for future water and resource management go to http://www.sciencemag.org/content/early/2013/11/27/science.1242335.full.pdf

Cass Cairns | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>