Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phase of the moon affects amount of rainfall

01.02.2016

When the moon is high in the sky, it creates bulges in the planet's atmosphere that creates imperceptible changes in the amount of rain that falls below.

New University of Washington research to be published in Geophysical Research Letters shows that the lunar forces affect the amount of rain - though very slightly.


Satellite data over the tropics, between 10 degrees S and 10 degrees N, shows a slight dip in rainfall when the moon is directly overhead or underfoot. The top panel shows the air pressure, the middle shows the rate of change in air pressure, and the bottom shows the rainfall difference from the average. The change is 0.78 micrometers, or less than one ten thousandth of an inch, per hour.

Credit: Tsubasa Kohyama/University of Washington

"As far as I know, this is the first study to convincingly connect the tidal force of the moon with rainfall," said corresponding author Tsubasa Kohyama, a UW doctoral student in atmospheric sciences.

Kohyama was studying atmospheric waves when he noticed a slight oscillation in the air pressure. He and co-author John (Michael) Wallace, a UW professor of atmospheric sciences, spent two years tracking down the phenomenon.

Air pressure changes linked to the phases of the moon were first detected in 1847,and temperature in 1932, in ground-based observations. An earlier paper by the UW researchers used a global grid of data to confirm that air pressure on the surface definitely varies with the phases of the moon.

"When the moon is overhead or underfoot, the air pressure is higher," Kohyama said.

Their new paper is the first to show that the moon's gravitational tug also puts a slight damper on the rain.

When the moon is overhead, its gravity causes Earth's atmosphere to bulge toward it, so the pressure or weight of the atmosphere on that side of the planet goes up. Higher pressure increases the temperature of air parcels below. Since warmer air can hold more moisture, the same air parcels are now farther from their moisture capacity.

"It's like the container becomes larger at higher pressure," Kohyama said. The relative humidity affects rain, he said, because "lower humidity is less favorable for precipitation."

Kohyama and Wallace used 15 years of data collected by NASA and the Japan Aerospace Exploration Agency's Tropical Rainfall Measuring Mission satellite from 1998 to 2012 to show that the rain is indeed slightly lighter when the moon is high. The change is only about 1 percent of the total rainfall variation, though, so not enough to affect other aspects of the weather or for people to notice the difference.

"No one should carry an umbrella just because the moon is rising," Kohyama said. Instead, this effect could be used to test climate models, he said, to check if their physics is good enough to reproduce how the pull of the moon eventually leads to less rain.

Wallace plans to continue exploring the topic to see whether certain categories of rain, like heavy downpours, are more susceptible to the phases of the moon, and whether the frequency of rainstorms shows any lunar connection.

###

The research was funded by the National Science Foundation, the Tanaka Ikueikai Scholarship Society, and the Iizuka Takeshi Scholarship Foundation.

For more information, contact Kohyama at kohyama@uw.edu. Wallace is traveling out of the country through March.

Media Contact

Hannah Hickey
hickeyh@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Hannah Hickey | EurekAlert!

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>