Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phase of the moon affects amount of rainfall

01.02.2016

When the moon is high in the sky, it creates bulges in the planet's atmosphere that creates imperceptible changes in the amount of rain that falls below.

New University of Washington research to be published in Geophysical Research Letters shows that the lunar forces affect the amount of rain - though very slightly.


Satellite data over the tropics, between 10 degrees S and 10 degrees N, shows a slight dip in rainfall when the moon is directly overhead or underfoot. The top panel shows the air pressure, the middle shows the rate of change in air pressure, and the bottom shows the rainfall difference from the average. The change is 0.78 micrometers, or less than one ten thousandth of an inch, per hour.

Credit: Tsubasa Kohyama/University of Washington

"As far as I know, this is the first study to convincingly connect the tidal force of the moon with rainfall," said corresponding author Tsubasa Kohyama, a UW doctoral student in atmospheric sciences.

Kohyama was studying atmospheric waves when he noticed a slight oscillation in the air pressure. He and co-author John (Michael) Wallace, a UW professor of atmospheric sciences, spent two years tracking down the phenomenon.

Air pressure changes linked to the phases of the moon were first detected in 1847,and temperature in 1932, in ground-based observations. An earlier paper by the UW researchers used a global grid of data to confirm that air pressure on the surface definitely varies with the phases of the moon.

"When the moon is overhead or underfoot, the air pressure is higher," Kohyama said.

Their new paper is the first to show that the moon's gravitational tug also puts a slight damper on the rain.

When the moon is overhead, its gravity causes Earth's atmosphere to bulge toward it, so the pressure or weight of the atmosphere on that side of the planet goes up. Higher pressure increases the temperature of air parcels below. Since warmer air can hold more moisture, the same air parcels are now farther from their moisture capacity.

"It's like the container becomes larger at higher pressure," Kohyama said. The relative humidity affects rain, he said, because "lower humidity is less favorable for precipitation."

Kohyama and Wallace used 15 years of data collected by NASA and the Japan Aerospace Exploration Agency's Tropical Rainfall Measuring Mission satellite from 1998 to 2012 to show that the rain is indeed slightly lighter when the moon is high. The change is only about 1 percent of the total rainfall variation, though, so not enough to affect other aspects of the weather or for people to notice the difference.

"No one should carry an umbrella just because the moon is rising," Kohyama said. Instead, this effect could be used to test climate models, he said, to check if their physics is good enough to reproduce how the pull of the moon eventually leads to less rain.

Wallace plans to continue exploring the topic to see whether certain categories of rain, like heavy downpours, are more susceptible to the phases of the moon, and whether the frequency of rainstorms shows any lunar connection.

###

The research was funded by the National Science Foundation, the Tanaka Ikueikai Scholarship Society, and the Iizuka Takeshi Scholarship Foundation.

For more information, contact Kohyama at kohyama@uw.edu. Wallace is traveling out of the country through March.

Media Contact

Hannah Hickey
hickeyh@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Hannah Hickey | EurekAlert!

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>