Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oldest Earth Mantle Reservoir Discovered

12.08.2010
Researchers discover evidence for the oldest Earth mantle reservoir on Baffin Island

Researchers have found a primitive Earth mantle reservoir on Baffin Island in the Canadian Arctic. Geologist Matthew Jackson and his colleagues from a multi-institution collaboration report the finding--the first discovery of what may be a primitive Earth mantle--this week in the journal Nature.

The Earth's mantle is a rocky, solid shell that is between the Earth's crust and the outer core, and makes up about 84 percent of the Earth's volume. The mantle is made up of many distinct portions or reservoirs that have different chemical compositions.

Scientists had previously concluded that the Earth was slightly older than 4.5 billion years old, but had not found a piece of the Earth's primitive mantle.

Until recently, researchers generally thought that the Earth and the other planets of the solar system were chondritic, meaning that the mantle's chemistry was thought to be similar to that of chondrites--some of the oldest, most primitive objects in the solar system. Assuming a chondritic model of the Earth, a piece of the primitive mantle would have certain isotope ratios of the chemical elements of helium, lead and neodymium.

The model that the Earth was chondritic was called into question with a discovery five years ago by a team at the Carnegie Institution of Washington, which suggested the ratio of neodymium on Earth was higher than what would be expected if the Earth were indeed chondritic.

That finding changed the neodymium ratio expected in the primitive mantle and in turn, changed where researchers should be looking to find evidence of a primitive mantle. According to the lead author, Matthew Jackson, "We had been looking under the wrong rock."

Since many of the ancient rocks have melted over time, finding a piece of the primitive mantle means studying lavas. Lavas retain the same isotopic composition of the rocks that have melted into the lava. Therefore, testing the lava's composition is identical to testing the original rock's composition.

When the assumption about the neodymium ratio was altered, Jackson and his colleagues knew they should take a look at lava samples from Baffin Island, since those samples contained the correct ratios of helium and neodymium. They discovered that the lavas also had the correct ratio for lead. The lead isotopes suggest that the samples from Baffin Island date the lava's mantle source reservoir to between 4.55 and 4.45 billion years old, only a little younger than the age of the Earth. The lava sample comes from an ancient rock that melted 62 million years ago.

When the researchers studied the composition of the lava found at Baffin Island, they discovered that the sample had the correct ratios of all three chemical elements--helium, lead, and the new non-chronditic neodymium ratio. This discovery suggests that the sample from Baffin Island is the first evidence for the oldest mantle reservoir.

This study challenges the idea that the Earth has a chondritic primitive mantle and according to Matthew Jackson is, "suggesting an alternative." One possibility, according to Jackson, is that "the early Earth went through a differentiation event and the Earth's crust was extracted from the early mantle and is now hidden in the deep earth; the hidden crust and the mantle found on Baffin Island would sum to chondritic."

This discovery will help researchers understand the composition of the original, early Earth. This research was supported by the National Science Foundation and the Carnegie Institution of Washington.

Media Contacts
Kimberly J. Montgomery, NSF (703) 292-8463 kmontgom@nsf.gov
Co-Investigators
Matthew Jackson, Boston University 617-358-5891 jacksonm@bu.edu
Richard Carlson, Carnegie Institution of Washington 202-478-8474 rcarlson@ciw.edu

Mark Kurz, Woods Hole Oceanographic Institution 508-289-2888 mkurz@whoi.edu

Related Websites
Carnegie Institution for Science press release: http://carnegiescience.edu/news/arctic_rocks_offer_new_glimpse_primitive_earth

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Kimberly J. Montgomery | EurekAlert!
Further information:
http://www.nsf.gov
http://nsf.gov/news/news_summ.jsp?cntn_id=117492&org=NSF&from=news

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>