Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Salinity Trends Show Human Fingerprint

02.11.2012
Changes in ocean salinity over the second half of the 20th Century are consistent with the influence of human activities and inconsistent with natural climate variations, according to a new study.

Observed changes agree with computer modeling of salinity trends in a steadily warming world, said Scripps Institution of Oceanography, UC San Diego, climate researcher David Pierce, the study's lead author.

Ocean salinity changes are driven by the world's patterns of evaporation and rainfall, which themselves are changing. Observations over recent decades have found a general intensification of salinity differences in which salty ocean regions experience even more evaporation of surface waters and relatively fresh regions are becoming even more diluted with precipitation. These patterns are part of global changes in precipitation and evaporation.

Pierce said the significance of the study is that it provides an independent check of the effects of climate change on the water cycle using different instruments and techniques than weather station rainfall measurements. Studies of rainfall over land are harder to measure and place in context because of changes to weather stations over the years and the episodic nature of storms.

"The salinity in the ocean averages out all that variability," said Pierce. The paper will be published 2 November in the American Geophysical Union journal Geophysical Research Letters. Co-authors include Peter J. Gleckler, Benjamin Santer and Paul Durack of the Lawrence Livermore National Laboratory in Livermore, Calif. and Tim Barnett of Scripps Oceanography.

The study builds on previous analyses conducted in the last decade by Barnett, Pierce and others. They demonstrated that rising temperatures in the upper 700 meters (2,000 feet) of the ocean also can only be explained by anthropogenic climate change, which is caused mostly by an accumulation of carbon dioxide created by fossil fuel use.

This research complements the temperature analysis by considering salinity, the other main factor that determines the density of ocean water. Ocean water density is a key factor determining how water moves in the oceans.

"By combining the analysis of salinity and temperature, this study brings our level of understanding global scale oceanic changes to a new level," said Gleckler.

The previous temperature studies and this analysis of ocean salinity use a technique known as detection and attribution. In this method, observed trends in ocean salinity are compared to the effects of various historical phenomena such as volcanic eruptions or solar fluctuations and to climate cycles such as El Niño. When the computer climate models were run, the influence of those phenomena does not replicate the salinity or temperature patterns that researchers have observed since 1955. Only when the warming trends associated with human activity were added could the observed salinity trends and temperature changes be explained.

The research performed in this study will likely contribute to the next report of the Intergovernmental Panel on Climate Change, scheduled to be released in phases beginning in 2013.

The U.S. Department of Energy and NOAA funded the research.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press by clicking on this link: http://dx.doi.org/10.1029/2012GL053389

Or, you may order a copy of the paper by emailing your request to Kate Ramsayer at kramsayer@agu.org. Please provide your name, the name of your publication, and your phone number.


Title:
"The fingerprint of human-induced changes in the ocean's salinity and temperature fields"
Authors:
David W. Pierce: Division of Climate, Atmospheric Sciences, and Physical Oceanography,

Scripps Institution of Oceanography, La Jolla, California, USA;

Peter J. Gleckler: Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California, USA;

Tim P Barnett: Division of Climate, Atmospheric Sciences, and Physical Oceanography, Scripps Institution of Oceanography, La Jolla, California, USA;

Benjamin D. Santer and Paul James Durack: Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California, USA;

Contact information for the authors:
Dave Pierce, Telephone: (858) 534-8276, email: dpierce@ucsd.edu.

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>