Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Salinity Trends Show Human Fingerprint

02.11.2012
Changes in ocean salinity over the second half of the 20th Century are consistent with the influence of human activities and inconsistent with natural climate variations, according to a new study.

Observed changes agree with computer modeling of salinity trends in a steadily warming world, said Scripps Institution of Oceanography, UC San Diego, climate researcher David Pierce, the study's lead author.

Ocean salinity changes are driven by the world's patterns of evaporation and rainfall, which themselves are changing. Observations over recent decades have found a general intensification of salinity differences in which salty ocean regions experience even more evaporation of surface waters and relatively fresh regions are becoming even more diluted with precipitation. These patterns are part of global changes in precipitation and evaporation.

Pierce said the significance of the study is that it provides an independent check of the effects of climate change on the water cycle using different instruments and techniques than weather station rainfall measurements. Studies of rainfall over land are harder to measure and place in context because of changes to weather stations over the years and the episodic nature of storms.

"The salinity in the ocean averages out all that variability," said Pierce. The paper will be published 2 November in the American Geophysical Union journal Geophysical Research Letters. Co-authors include Peter J. Gleckler, Benjamin Santer and Paul Durack of the Lawrence Livermore National Laboratory in Livermore, Calif. and Tim Barnett of Scripps Oceanography.

The study builds on previous analyses conducted in the last decade by Barnett, Pierce and others. They demonstrated that rising temperatures in the upper 700 meters (2,000 feet) of the ocean also can only be explained by anthropogenic climate change, which is caused mostly by an accumulation of carbon dioxide created by fossil fuel use.

This research complements the temperature analysis by considering salinity, the other main factor that determines the density of ocean water. Ocean water density is a key factor determining how water moves in the oceans.

"By combining the analysis of salinity and temperature, this study brings our level of understanding global scale oceanic changes to a new level," said Gleckler.

The previous temperature studies and this analysis of ocean salinity use a technique known as detection and attribution. In this method, observed trends in ocean salinity are compared to the effects of various historical phenomena such as volcanic eruptions or solar fluctuations and to climate cycles such as El Niño. When the computer climate models were run, the influence of those phenomena does not replicate the salinity or temperature patterns that researchers have observed since 1955. Only when the warming trends associated with human activity were added could the observed salinity trends and temperature changes be explained.

The research performed in this study will likely contribute to the next report of the Intergovernmental Panel on Climate Change, scheduled to be released in phases beginning in 2013.

The U.S. Department of Energy and NOAA funded the research.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press by clicking on this link: http://dx.doi.org/10.1029/2012GL053389

Or, you may order a copy of the paper by emailing your request to Kate Ramsayer at kramsayer@agu.org. Please provide your name, the name of your publication, and your phone number.


Title:
"The fingerprint of human-induced changes in the ocean's salinity and temperature fields"
Authors:
David W. Pierce: Division of Climate, Atmospheric Sciences, and Physical Oceanography,

Scripps Institution of Oceanography, La Jolla, California, USA;

Peter J. Gleckler: Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California, USA;

Tim P Barnett: Division of Climate, Atmospheric Sciences, and Physical Oceanography, Scripps Institution of Oceanography, La Jolla, California, USA;

Benjamin D. Santer and Paul James Durack: Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California, USA;

Contact information for the authors:
Dave Pierce, Telephone: (858) 534-8276, email: dpierce@ucsd.edu.

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>