Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean’s Color Affects Hurricane Paths

13.08.2010
A change in the color of ocean waters could have a drastic effect on the prevalence of hurricanes, new research indicates. In a simulation of such a change in one region of the North Pacific, the study finds that hurricane formation decreases by 70 percent. That would be a big drop for a region that accounts for more than half the world’s reported hurricane-force winds.

It turns out that the formation of typhoons – as hurricanes are known in the region – is heavily mediated by the presence of chlorophyll, a green pigment that helps the tiny single-celled organisms known as phytoplankton convert sunlight into food for the rest of the marine ecosystem. Chlorophyll contributes to the ocean’s color.

“We think of the oceans as blue, but the oceans aren’t really blue, they’re actually a sort of greenish color,” said Anand Gnanadesikan, a researcher with the National Oceanic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory in Princeton, New Jersey. “The fact that [the oceans] are not blue has a [direct] impact on the distribution of tropical cyclones.”

In the study, to be published in an upcoming issue of Geophysical Research Letters, a journal of the American Geophysical Union, Gnanadesikan’s team describes how a drop in chlorophyll concentration, and the corresponding reduction in ocean color, could cause a decrease in the formation of hurricanes in the color-depleted zone. Although the study looks at the effects of a simulated drop in the phytoplankton population (and therefore in the ocean’s green tint), recently-published research argued that global phytoplankton populations have been steadily declining over the last century.

Gnanadesikan compared hurricane formation rates in a computer model under two scenarios. For the first, he modeled real conditions using chlorophyll concentrations in the North Pacific observed by satellites. He then compared that to a scenario where the chlorophyll concentration in parts of the North Pacific Subtropical Gyre – a large, clockwise-circulation pattern encompassing most of the North Pacific – was set to zero.

In the latter scenario, the absence of chlorophyll in the subtropical gyre affected hurricane formation by modifying air circulation and heat distribution patterns both within and beyond the gyre. In fact, along the equator, those new patterns outside the gyre led to an increase in hurricane formation of about 20 percent. Yet, this rise was more than made up for by the 70 percent decrease in storms further north, over and near the gyre. The model showed that more hurricanes would hit the Philippines and Vietnam, but fewer would make landfall in South China and Japan.

In the no-chlorophyll scenario, sunlight is able to penetrate deeper into the ocean, leaving the surface water cooler. The drop in the surface temperature in the model affects hurricane formation in three main ways: cold water provides less energy; air circulation patterns change, leading to more dry air aloft which makes it hard for hurricanes to grow. The changes in air circulation trigger strong winds aloft, which tend to prevent thunderstorms from developing the necessary superstructure that allows them to grow into hurricanes.

A decrease in hurricanes in the North Pacific is just one example of how changing chlorophyll concentrations can have far-reaching, previously unconsidered, effects. The specific outcomes over different patches of the ocean will vary based on local currents and ocean conditions, said Gnanadesikan.

A complete absence of chlorophyll in parts of the ocean would be a drastic change, Gnanadesikan admits. Yet, its potential impact is still important to consider, he maintains. The northern Pacific gyre that he studied is already the “biological desert of the ocean,” he said. So the surprise, then, is that “even in this region that is apparently clear, biologically-mediated heating is important.”

This research was primarily supported by NOAA, with additional support from the National Aeronautics and Space Administration.

Title:
“How ocean color can steer Pacific tropical cyclones”
Authors:
A. Gnanadesikan, G. A. Vecchi, W. G. Anderson, R. Hallberg: Geophysical Fluid Dynamic Laboratory, National Oceanic and Atmospheric Administration, Princeton, New Jersey, USA; K. Emanuel: Department of Earth, Atmosphere and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Contact information for the authors:
Anand Gnanadesikan, NOAA: 609-987-5062, anand.gnanadesikan@noaa.gov

Colin Schultz | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>