Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean plankton sponge up nearly twice the carbon currently assumed

18.03.2013
Famed marine principle refuted by UCI-led study

Models of carbon dioxide in the world's oceans need to be revised, according to new work by UC Irvine and other scientists published online Sunday in Nature Geoscience. Trillions of plankton near the surface of warm waters are far more carbon-rich than has long been thought, they found. Global marine temperature fluctuations could mean that tiny Prochlorococcus and other microbes digest double the carbon previously calculated. Carbon dioxide is the leading driver of disruptive climate change.

In making their findings, the researchers have upended a decades-old core principle of marine science known as the Redfield ratio, named for famed oceanographer Alfred Redfield. He concluded in 1934 that from the top of the world's oceans to their cool, dark depths, both plankton and the materials they excrete contain the same ratio (106:16:1) of carbon, nitrogen and phosphorous.

But as any gardener who has done a soil test knows, amounts of those elements can vary widely. The new study's authors found dramatically different ratios at a variety of marine locations. What matters more than depth, they concluded, is latitude. In particular, the researchers detected far higher levels of carbon in warm, nutrient-starved areas (195:28:1) near the equator than in cold, nutrient-rich polar zones (78:13:1).

"The Redfield concept remains a central tenet in ocean biology and chemistry. However, we clearly show that the nutrient content ratio in plankton is not constant and thus reject this longstanding central theory for ocean science," said lead author Adam Martiny, associate professor of Earth system science and ecology & evolutionary biology at UC Irvine. "Instead, we show that plankton follow a strong latitudinal pattern."

He and fellow investigators made seven expeditions to gather big jars of water from the frigid Bering Sea, the North Atlantic near Denmark, mild Caribbean waters and elsewhere. They used a sophisticated $1 million cell sorter aboard the research vessel to analyze samples at the molecular level. They also compared their data to published results from 18 other marine voyages.

Martiny noted that since Redfield first announced his findings, "there have been people over time putting out a flag, saying, 'Hey, wait a minute.'" But for the most part, Redfield's ratio of constant elements is a staple of textbooks and research. In recent years, Martiny said, "a couple of models have suggested otherwise, but they were purely models. This is really the first time it's been shown with observation. That's why it's so important."

Funding for the work was provided by the National Science Foundation, the U.S. Department of Energy and the UCI Environment Institute. Fellow authors are Chau Pham, Francois Primeau, Jasper Vrugt and Keith Moore of UC Irvine; Simon Levin of Princeton University and UC Irvine; and Michael Lomas of the Bigelow Laboratory for Ocean Sciences.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with more than 28,000 undergraduate and graduate students, 1,100 faculty and 9,400 staff. Orange County's second-largest employer, UCI contributes an annual economic impact of $4.3 billion. For more UCI news, visit http://www.news.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Contact:

Janet Wilson

UCI maintains an online directory of faculty available as experts to the media. To access, visit http://www.today.uci.edu/experts.

Janet Wilson | EurekAlert!
Further information:
http://www.uci.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>