Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New forecasting method: Predicting extreme floods in the Andes mountains


Predicting floods following extreme rainfall in the central Andes is enabled by a new method. Climate change has made these events more frequent and more severe in recent decades.

Now complex networks analysis of satellite weather data makes it possible to produce a robust warning system for the first time, as a study to be published in the journal Nature Communications shows.

This might allow for improved disaster preparedness. As the complex systems technique builds upon a mathematical comparison that can be utilised for any time series data, the approach could be applied to extreme events in all sorts of complex systems.

“Current weather forecast models cannot capture the intensity of the most extreme rainfall events, yet these events are of course the most dangerous , and can have severe impacts for the local population, for example major floods or even landslides,” says lead author Niklas Boers of the Potsdam Institute for Climate Impact Research (PIK). “Using complex networks analysis, we now found a way to predict such events in the South American Andes.”

When the monsoon hits South America from December to February, it brings moist warm air masses from the tropical Atlantic. Travelling westwards, these winds are blocked by the steep Andes mountains, several thousand metres high, and turn southwards.

Under specific air pressure conditions, the warm air masses, loaded with moisture, meet cold and dry winds approaching from the south. This leads to abundant rainfall at high elevations, resulting in floods in the densely populated foothills of the Bolivian and Argentinian Andes. “Surprisingly, and in contrast to widespread understanding so far, these events propagate against the southward wind direction,” says Boers.

‘Big Data’ analysis of observational time series from satellites

The international team of scientists performed a ‘Big Data’ analysis of close to 50,000 high-resolution weather data time series dating from the 15 years since high quality satellite data became available, generated by NASA together with the Japan Aerospace Exploration Agency.

“We found that these huge rainfall clusters start off in the area around Buenos Aires, but then wander northwestward towards the Andes, where after two days they cause extreme rainfall events”, says Boers. The new method makes it possible to correctly predict 90 percent of extreme rainfall events in the Central Andes occurring during conditions of the El Niño weather phenomenon when floods are generally more frequent, and 60 percent of those occurring under any other conditions.

“While the findings were hard to derive, local institutions can now apply them quite easily by using readily available data, which helps a lot,” says co-author José A. Marengo of the National Institute for Space Research in Sao Paulo, Brazil. “Major rainfall events can result in floods which for instance in early 2007 alone produced estimated costs of more than 400 million US dollars. It is now up to the affected countries to adapt their disaster preparation planning.”

Method can be applied to the climate, but also to financial markets

“Comparing weather data sounds simple enough, but it actually took the new mathematical tool that we developed to detect the intricate connections that lead to the extremes,” says co-author Jürgen Kurths, co-chair of PIK’s research domain Transdisciplinary Concepts and Methods. “The data was there, but nobody joined the dots like this before. The method provides a general framework that could now be applied to forecast extreme changes in time series of other complex systems,” says Kurths. “In fact, this could be financial markets, brain activity, or even earthquakes.”

Article: Boers, N., Bookhagen, B., Barbosa, H.M.J., Kurths, J., Marengo, J.A. (2014): Prediction of extreme floods in the eastern central Andes based on a complex networks approach. Nature Communications (online) [DOI: 10.1038/ncomms6199]

Weblink to the article once it is published:

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
Twitter: @PIK_Climate

Weitere Informationen: - Weblink to the article once it is published

Jonas Viering | PIK Potsdam
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>