Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Network observation at the GAW stations and atmospheric CO2 mixing ratios over China

09.12.2009
Carbon dioxide (CO2) is the most important greenhouse gas regulated by the Kyoto Protocol. Human activities, such as fossil fuel burning and land use change, are major emitters of CO2, which is widely recognized as drivers of global warming and climate change.

In the past decades, the field campaign and research program were only conducted at a few sites in China by different agencies. However, none of those measurements could effectively document spatial and temporal distributions of atmospheric CO2 and provide essential information for our understanding of regional differences and distributions over China.

Thus, it is essential to establish a long-term observational network at multiple sites and carefully calibrate on internationally agreed reference scales with better quality controls.

Chinese Academy of Meteorological Sciences in Beijing initiated network observation at the four Global Atmosphere Watch (GAW) stations in China: Waliguan (36.29ºN, 100.90ºE, 3816m asl) in remote western China, Shangdianzi (40.39ºN, 117.07ºE, 293.9m asl) in northeast Beijing, Lin'an (30.3ºN, 119.73ºE, 138m asl) in Yangtze Delta, and Longfengshan (44.73ºN, 127.6ºE, 310m asl) in northeastern China. It shows for the first time the atmospheric CO2 mixing ratios and regional differences based on internationally recognized weekly air sampling data from September 2006 to August 2007. The study is reported in Issue 52 (November, 2009) of Science in China Series D: Earth Sciences.

World Meteorological Organization (WMO) through its Global Atmosphere Watch (GAW) Program, coordinates the observations of greenhouse gases in the atmosphere through a network of stations located in more than 50 countries. According to its 5th Greenhouse Gases Bulletin announced on 23 November 2009, the globally averaged mixing ratio of atmospheric CO2 in 2008 was 385.2ppm (number of molecules of the gas per million molecules of dry air), with an increase of 2.0ppm from the previous year, continuing the trend of exponential increase. Since 1750, atmospheric CO2 has increased by 38% primarily because of emissions from combustion of fossil fuels, deforestation, and land use change, contributing 63.5% to the increase in overall radiative forcing. The Bulletins provide critical information on the global state of the atmosphere in a concise manner and highlight recent accomplishments of research and technology application. The 2008 Bulletin precedes the 15th session of the United Nations Framework Convention on Climate Change (Copenhagen, 7-18 December 2009).

Long-term observation since 1990 at Waliguan GAW global station in western China validated comparable atmospheric CO2 mixing ratios to that of other global background stations in the world. The data were widely used by the WMO Greenhouse Gases Bulletins and series of scientific reports such as IPCC assessments. Results from this study further shows that atmospheric CO2 mixing ratios at Waliguan, Shangdianzi, Lin'an, and Longfengshan were 383.5, 385.9, 387.8, and 384.3 ppm, respectively, during the research period from September 2006 to August 2007. The atmospheric CO2 mixing ratio at the Waliguan station changed slightly. However, it changed sharply at the Shangdianzi and the Lin'an stations due to great influence of human activities in the Jingjinji and the Changjiang Delta economic zones, and changed regularly with seasons at Longfengshan station under dual influences of human activities and plant photosynthesis. The results from this study could lay the foundation for more profound studies in different areas of China, and could be used to improve the understanding of carbon source and sink distribution.

The authors are affiliated with the Chinese Academy of Meteorological Sciences in Beijing, the main research body of the China Meteorological Administration (CMA). In order to establish a unified Chinese atmospheric greenhouse gases observing system and well integrate it into the global network, they are keen on working with international colleagues through intensive collaborations, especially under the GAW framework. The system will link to international standard scales and improve geographical coverage of the network, which is necessary for the integrated database and for proper use. This work aims at the highest quality and accuracy possible to identify trends, seasonal variability, spatial and temporal distribution, source, and sink strengths of greenhouse gases to improve our understanding of the carbon cycle and predict how the atmosphere and climate will evolve in the future as a result of human's activities.

Funding for this research is from the National Natural Science Foundation of China (Grant No. 40775078), the National Non-profit Research Project to Serve the Public Interest (Grant No. GYHY200806026), and the International S & T Cooperation Program of the MOST (Grant No. 2007DFA20650).

Reference:

1. IPCC, 2007. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge.

2. Zhou X J. The Summary Report of China Atmosphere Watch Baseline Observatory. Beijing: China Meteorological Press, 2005.

3. Zhou L X, Zhou X J, Zhang X C, et al. Progress in the study of background greenhouse gases at Waliguan observatory. Acta Meteorol Sinica, 2007, 65(3): 458-468.

4. Zhou L X, James W, White C, et al. Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan Observatory: Seasonally averaged 1991� source/sink signals, and a comparison of 1998� record to the 11 selected sites in the Northern Hemisphere. Global biogeochem Cycles, VOL 20, GB2001, doi: 10.1029/2004GB002431, 2006.

5. http://www.ipcc.cma.gov.cn/cn/

6. http://www.scichina.com:8080/sciDe/EN/volumn/current.shtml

7. http://www.bgc.mpg.de/service/iso_gas_lab/IAEA-WMO2009/index.shtml

8. http://www.wmo.int/pages/resources/multimedia/greenhousegases.html

Lingxi Zhou | EurekAlert!
Further information:
http://www.cams.cma.gov.cn

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>