Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Network observation at the GAW stations and atmospheric CO2 mixing ratios over China

09.12.2009
Carbon dioxide (CO2) is the most important greenhouse gas regulated by the Kyoto Protocol. Human activities, such as fossil fuel burning and land use change, are major emitters of CO2, which is widely recognized as drivers of global warming and climate change.

In the past decades, the field campaign and research program were only conducted at a few sites in China by different agencies. However, none of those measurements could effectively document spatial and temporal distributions of atmospheric CO2 and provide essential information for our understanding of regional differences and distributions over China.

Thus, it is essential to establish a long-term observational network at multiple sites and carefully calibrate on internationally agreed reference scales with better quality controls.

Chinese Academy of Meteorological Sciences in Beijing initiated network observation at the four Global Atmosphere Watch (GAW) stations in China: Waliguan (36.29ºN, 100.90ºE, 3816m asl) in remote western China, Shangdianzi (40.39ºN, 117.07ºE, 293.9m asl) in northeast Beijing, Lin'an (30.3ºN, 119.73ºE, 138m asl) in Yangtze Delta, and Longfengshan (44.73ºN, 127.6ºE, 310m asl) in northeastern China. It shows for the first time the atmospheric CO2 mixing ratios and regional differences based on internationally recognized weekly air sampling data from September 2006 to August 2007. The study is reported in Issue 52 (November, 2009) of Science in China Series D: Earth Sciences.

World Meteorological Organization (WMO) through its Global Atmosphere Watch (GAW) Program, coordinates the observations of greenhouse gases in the atmosphere through a network of stations located in more than 50 countries. According to its 5th Greenhouse Gases Bulletin announced on 23 November 2009, the globally averaged mixing ratio of atmospheric CO2 in 2008 was 385.2ppm (number of molecules of the gas per million molecules of dry air), with an increase of 2.0ppm from the previous year, continuing the trend of exponential increase. Since 1750, atmospheric CO2 has increased by 38% primarily because of emissions from combustion of fossil fuels, deforestation, and land use change, contributing 63.5% to the increase in overall radiative forcing. The Bulletins provide critical information on the global state of the atmosphere in a concise manner and highlight recent accomplishments of research and technology application. The 2008 Bulletin precedes the 15th session of the United Nations Framework Convention on Climate Change (Copenhagen, 7-18 December 2009).

Long-term observation since 1990 at Waliguan GAW global station in western China validated comparable atmospheric CO2 mixing ratios to that of other global background stations in the world. The data were widely used by the WMO Greenhouse Gases Bulletins and series of scientific reports such as IPCC assessments. Results from this study further shows that atmospheric CO2 mixing ratios at Waliguan, Shangdianzi, Lin'an, and Longfengshan were 383.5, 385.9, 387.8, and 384.3 ppm, respectively, during the research period from September 2006 to August 2007. The atmospheric CO2 mixing ratio at the Waliguan station changed slightly. However, it changed sharply at the Shangdianzi and the Lin'an stations due to great influence of human activities in the Jingjinji and the Changjiang Delta economic zones, and changed regularly with seasons at Longfengshan station under dual influences of human activities and plant photosynthesis. The results from this study could lay the foundation for more profound studies in different areas of China, and could be used to improve the understanding of carbon source and sink distribution.

The authors are affiliated with the Chinese Academy of Meteorological Sciences in Beijing, the main research body of the China Meteorological Administration (CMA). In order to establish a unified Chinese atmospheric greenhouse gases observing system and well integrate it into the global network, they are keen on working with international colleagues through intensive collaborations, especially under the GAW framework. The system will link to international standard scales and improve geographical coverage of the network, which is necessary for the integrated database and for proper use. This work aims at the highest quality and accuracy possible to identify trends, seasonal variability, spatial and temporal distribution, source, and sink strengths of greenhouse gases to improve our understanding of the carbon cycle and predict how the atmosphere and climate will evolve in the future as a result of human's activities.

Funding for this research is from the National Natural Science Foundation of China (Grant No. 40775078), the National Non-profit Research Project to Serve the Public Interest (Grant No. GYHY200806026), and the International S & T Cooperation Program of the MOST (Grant No. 2007DFA20650).

Reference:

1. IPCC, 2007. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge.

2. Zhou X J. The Summary Report of China Atmosphere Watch Baseline Observatory. Beijing: China Meteorological Press, 2005.

3. Zhou L X, Zhou X J, Zhang X C, et al. Progress in the study of background greenhouse gases at Waliguan observatory. Acta Meteorol Sinica, 2007, 65(3): 458-468.

4. Zhou L X, James W, White C, et al. Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan Observatory: Seasonally averaged 1991� source/sink signals, and a comparison of 1998� record to the 11 selected sites in the Northern Hemisphere. Global biogeochem Cycles, VOL 20, GB2001, doi: 10.1029/2004GB002431, 2006.

5. http://www.ipcc.cma.gov.cn/cn/

6. http://www.scichina.com:8080/sciDe/EN/volumn/current.shtml

7. http://www.bgc.mpg.de/service/iso_gas_lab/IAEA-WMO2009/index.shtml

8. http://www.wmo.int/pages/resources/multimedia/greenhousegases.html

Lingxi Zhou | EurekAlert!
Further information:
http://www.cams.cma.gov.cn

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>