Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Network observation at the GAW stations and atmospheric CO2 mixing ratios over China

09.12.2009
Carbon dioxide (CO2) is the most important greenhouse gas regulated by the Kyoto Protocol. Human activities, such as fossil fuel burning and land use change, are major emitters of CO2, which is widely recognized as drivers of global warming and climate change.

In the past decades, the field campaign and research program were only conducted at a few sites in China by different agencies. However, none of those measurements could effectively document spatial and temporal distributions of atmospheric CO2 and provide essential information for our understanding of regional differences and distributions over China.

Thus, it is essential to establish a long-term observational network at multiple sites and carefully calibrate on internationally agreed reference scales with better quality controls.

Chinese Academy of Meteorological Sciences in Beijing initiated network observation at the four Global Atmosphere Watch (GAW) stations in China: Waliguan (36.29ºN, 100.90ºE, 3816m asl) in remote western China, Shangdianzi (40.39ºN, 117.07ºE, 293.9m asl) in northeast Beijing, Lin'an (30.3ºN, 119.73ºE, 138m asl) in Yangtze Delta, and Longfengshan (44.73ºN, 127.6ºE, 310m asl) in northeastern China. It shows for the first time the atmospheric CO2 mixing ratios and regional differences based on internationally recognized weekly air sampling data from September 2006 to August 2007. The study is reported in Issue 52 (November, 2009) of Science in China Series D: Earth Sciences.

World Meteorological Organization (WMO) through its Global Atmosphere Watch (GAW) Program, coordinates the observations of greenhouse gases in the atmosphere through a network of stations located in more than 50 countries. According to its 5th Greenhouse Gases Bulletin announced on 23 November 2009, the globally averaged mixing ratio of atmospheric CO2 in 2008 was 385.2ppm (number of molecules of the gas per million molecules of dry air), with an increase of 2.0ppm from the previous year, continuing the trend of exponential increase. Since 1750, atmospheric CO2 has increased by 38% primarily because of emissions from combustion of fossil fuels, deforestation, and land use change, contributing 63.5% to the increase in overall radiative forcing. The Bulletins provide critical information on the global state of the atmosphere in a concise manner and highlight recent accomplishments of research and technology application. The 2008 Bulletin precedes the 15th session of the United Nations Framework Convention on Climate Change (Copenhagen, 7-18 December 2009).

Long-term observation since 1990 at Waliguan GAW global station in western China validated comparable atmospheric CO2 mixing ratios to that of other global background stations in the world. The data were widely used by the WMO Greenhouse Gases Bulletins and series of scientific reports such as IPCC assessments. Results from this study further shows that atmospheric CO2 mixing ratios at Waliguan, Shangdianzi, Lin'an, and Longfengshan were 383.5, 385.9, 387.8, and 384.3 ppm, respectively, during the research period from September 2006 to August 2007. The atmospheric CO2 mixing ratio at the Waliguan station changed slightly. However, it changed sharply at the Shangdianzi and the Lin'an stations due to great influence of human activities in the Jingjinji and the Changjiang Delta economic zones, and changed regularly with seasons at Longfengshan station under dual influences of human activities and plant photosynthesis. The results from this study could lay the foundation for more profound studies in different areas of China, and could be used to improve the understanding of carbon source and sink distribution.

The authors are affiliated with the Chinese Academy of Meteorological Sciences in Beijing, the main research body of the China Meteorological Administration (CMA). In order to establish a unified Chinese atmospheric greenhouse gases observing system and well integrate it into the global network, they are keen on working with international colleagues through intensive collaborations, especially under the GAW framework. The system will link to international standard scales and improve geographical coverage of the network, which is necessary for the integrated database and for proper use. This work aims at the highest quality and accuracy possible to identify trends, seasonal variability, spatial and temporal distribution, source, and sink strengths of greenhouse gases to improve our understanding of the carbon cycle and predict how the atmosphere and climate will evolve in the future as a result of human's activities.

Funding for this research is from the National Natural Science Foundation of China (Grant No. 40775078), the National Non-profit Research Project to Serve the Public Interest (Grant No. GYHY200806026), and the International S & T Cooperation Program of the MOST (Grant No. 2007DFA20650).

Reference:

1. IPCC, 2007. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge.

2. Zhou X J. The Summary Report of China Atmosphere Watch Baseline Observatory. Beijing: China Meteorological Press, 2005.

3. Zhou L X, Zhou X J, Zhang X C, et al. Progress in the study of background greenhouse gases at Waliguan observatory. Acta Meteorol Sinica, 2007, 65(3): 458-468.

4. Zhou L X, James W, White C, et al. Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan Observatory: Seasonally averaged 1991� source/sink signals, and a comparison of 1998� record to the 11 selected sites in the Northern Hemisphere. Global biogeochem Cycles, VOL 20, GB2001, doi: 10.1029/2004GB002431, 2006.

5. http://www.ipcc.cma.gov.cn/cn/

6. http://www.scichina.com:8080/sciDe/EN/volumn/current.shtml

7. http://www.bgc.mpg.de/service/iso_gas_lab/IAEA-WMO2009/index.shtml

8. http://www.wmo.int/pages/resources/multimedia/greenhousegases.html

Lingxi Zhou | EurekAlert!
Further information:
http://www.cams.cma.gov.cn

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

Scientists on the road to discovering impact of urban road dust

18.01.2018 | Ecology, The Environment and Conservation

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>