Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural selection has altered the appearance of Europeans over the past 5,000 years

11.03.2014

Ancient DNA from archaeological skeletons shows that European’s had darker skin, hair, and eye pigmentation 5,000 years ago

There has been much research into the factors that have influenced the human genome since the end of the last Ice Age. Anthropologists at Johannes Gutenberg University Mainz (JGU) and geneticists at University College London (UCL), working in collaboration with archaeologists from Berlin and Kiev, have analyzed ancient DNA from skeletons and found that selection has had a significant effect on the human genome even in the past 5,000 years, resulting in sustained changes to the appearance of people.


Grave with an about 5,000 years old skeleton from a kurgan of the Yamnaya culture near the town Kirovograd in Ukraine.

(photo: Alla V. Nikolova)

The results of this current research project have been published this week in an article entitled "Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 years" in the journal Proceedings of the National Academy of Sciences (PNAS).

For a number of years population geneticists have been able to detect echoes of natural selection in the genomes of living humans, but those techniques are typically not very accurate about when that natural selection took place. The researchers in Mainz and London now decided to take a new approach.

... more about:
»DNA »Europeans »PNAS »altered »evidence »humans »pigmentation »skeletons »skin

This involved analyzing DNA from archaeological skeletons and then comparing the prehistoric data with that of contemporary Europeans using computer simulations. Where the genetic changes could not be explained by the randomness of inheritance, the researchers were able to infer that positive selection played a role, i.e., that frequency of a certain mutation increased significantly in a given population.

While investigating numerous genetic markers in archaeological and living individuals, Sandra Wilde of the Palaeogenetics Group at the JGU Institute of Anthropology noticed striking differences in genes associated with hair, skin, and eye pigmentation. "Prehistoric Europeans in the region we studied would have been consistently darker than their descendants today," says Wilde, first author of the PNAS article.

"This is particularly interesting as the darker phenotype seems to have been preferred by evolution over hundreds of thousands of years. All our early ancestors were more darkly pigmented." However, things must have changed in the last 50,000 years as humans began to migrate to northern latitudes.

"In Europe we find a particularly wide range of genetic variation in terms of pigmentation," adds co-author Dr. Karola Kirsanow, who is also a member of the Palaeogenetics Group at Mainz University. "However, we did not expect to find that natural selection had been favoring lighter pigmentation over the past few thousand years." The signals of selection that the Mainz palaeogeneticists and their colleagues at University College London have identified are comparable to those for malaria resistance and lactase persistence, meaning that they are among the most pronounced that have been discovered to date in the human genome. The authors see several possible explanations.

"Perhaps the most obvious is that this is the result of adaptation to the reduced level of sunlight in northern latitudes," says Professor Mark Thomas of UCL, corresponding author of the study. "Most people of the world make most of their vitamin D in their skin as a result UV exposure. But at northern latitudes and with dark skin, this would have been less efficient. If people weren’t getting much vitamin D in their diet, then having lighter skin may have been the best option."

"But this vitamin D explanation seems less convincing when it comes to hair and eye color," Wilde continues. "Instead, it may be that lighter hair and eye color functioned as a signal indicating group affiliation, which in turn played a role in the selection of a partner." Sexual selection of this kind is common in animals and may also have been one of the driving forces behind human evolution over the past few millennia.

"We were expecting to find that changes in the human genome were the result of population dynamics, such as migration. In general we expect genetic changes due to natural selection to be the exception rather than the rule. At the same time, it cannot be denied that lactase persistence, i.e., the ability to digest the main sugar in milk as an adult, and pigmentation genes have been favored by natural selection to a surprising degree over the last 10,000 years or so," adds Professor Joachim Burger, senior author of the study.

"But it should be kept in mind that our findings do not necessarily mean that everything selected for in the past is still beneficial today. The characteristics handed down as a result of sexual selection can be more often explained as the result of preference on the part of individuals or groups rather than adaptation to the environment."

Publication:
Wilde, Sandra et al.
Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 years
Proceedings of the National Academy of Sciences (PNAS), 10 March 2014
DOI: 10.1073/pnas.1316513111

Photo:
www.uni-mainz.de/bilder_presse/10_anthropologie_jamnaja_skelett.jpg
Grave with an about 5,000 years old skeleton from a kurgan of the Yamnaya culture near the town Kirovograd in Ukraine (photo: Alla V. Nikolova)

Video:
http://www.youtube.com/watch?v=Kawbj78IFV8&list=PL0F68B2B14956A8A8
This short film shows the Mainz-based palaeogeneticists at work analyzing ancient DNA from skeletons.

Further information:
Dr. Karola Kirsanow
Dipl. Biol. Sandra Wilde
Institute of Anthropology
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-23472
e-mail: kirsanow@uni-mainz.de
http://www.uni-mainz.de/FB/Biologie/Anthropologie/MolA/English/Home/Home.html

Weitere Informationen:

http://beanproject.eu/
http://www.uni-mainz.de/FB/Biologie/Anthropologie/MolA/English/Home/Home.html
http://www.ucl.ac.uk/mace-lab/people/mark

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: DNA Europeans PNAS altered evidence humans pigmentation skeletons skin

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>