Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Eastern Pacific Get First Tropical Storm: Alvin

17.05.2013
NASA’s Aqua satellite and NOAA’s GOES-15 satellite captured imagery of the Eastern Pacific Ocean’s first named tropical storm, Alvin. Aqua and GOES-15 provided imagery of Alvin that provided a look at the overall storm and the temperatures of its cloud tops.

NASA’s Aqua satellite flew over Tropical Storm Alvin just as it reached tropical storm status on May 15 at 2047 UTC (4:47 p.m. EDT). The Atmospheric Infrared Sounder (AIRS) instrument that flies aboard Aqua captured an infrared image of the storm that showed bands of thunderstorms on the tropical storm’s western side were wrapping into the low-level center. Those bands of thunderstorms became more organized and more tightly wrapped by May 16 as the storm strengthened further.



NASA’s Aqua satellite flew over Tropical Storm Alvin just as it reached tropical storm status on May 15 at 2047 UTC (4:47 p.m. EDT). The Atmospheric Infrared Sounder (AIRS) instrument captured an infrared image of the storm. AIRS data showed bands of thunderstorms on the tropical storm’s western side wrapping into the low-level center. Credit: NASA JPL/Ed Olsen

AIRS data is infrared and gives an indication of temperature. With respect to tropical cyclones, AIRS provides temperatures of cloud tops and surrounding ocean surface temperatures, two factors important in determining the strength of a storm and what may happen with it. Cold cloud top temperatures, such as those seen in some of the bands around Alvin were near -62 Fahrenheit (-52 Celsius) and are indicative of strong uplift that can create strong, high thunderstorms with heavy rain potential.

NOAA’s GOES-15 satellite captured a near-infrared view of Tropical Storm Alvin on May 16 at 1200 UTC (8 a.m. EDT) as it continued moving west and away from Mexico. This near-infrared view showed that Alvin had become more tightly wrapped and more organized. According to the National Hurricane Center, satellite imagery of Alvin shows very deep convection resembling a central dense overcast, but noted that the low-level center is displaced a fair distance west of the strongest convection (rising air that creates thunderstorms that make up the tropical cyclone).

AIRS imagery is produced at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. and GOES imagery is created at NASA’s GOES Project, located at NASA’s Goddard Space Flight Center in Greenbelt, Md.

At 5 a.m. EDT on May 15, Alvin had maximum sustained winds near 50 mph (85 kph). It was located far from land, about 705 miles (1,135 km) south-southwest of Manzanillo, Mexico, near 9.1 north latitude and 106.9 west longitude. Alvin was moving to the west-northwest at 10 mph (17 kph) and had a minimum central pressure near 1003 millibars. Twenty four hours before, Alvin’s central pressure was near 1006 millibars. A drop in pressure indicates a strengthening low pressure area.

The National Hurricane Center noted that Alvin will be moving through warm waters over the next couple of days in the Eastern Pacific Ocean and is expected to reach hurricane strength by early on May 18 before weakening over the weekend of May 18 and 19.

Text credit: Rob Gutro
NASA’s Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013_Alvin.html

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>