Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Eastern Pacific Get First Tropical Storm: Alvin

17.05.2013
NASA’s Aqua satellite and NOAA’s GOES-15 satellite captured imagery of the Eastern Pacific Ocean’s first named tropical storm, Alvin. Aqua and GOES-15 provided imagery of Alvin that provided a look at the overall storm and the temperatures of its cloud tops.

NASA’s Aqua satellite flew over Tropical Storm Alvin just as it reached tropical storm status on May 15 at 2047 UTC (4:47 p.m. EDT). The Atmospheric Infrared Sounder (AIRS) instrument that flies aboard Aqua captured an infrared image of the storm that showed bands of thunderstorms on the tropical storm’s western side were wrapping into the low-level center. Those bands of thunderstorms became more organized and more tightly wrapped by May 16 as the storm strengthened further.



NASA’s Aqua satellite flew over Tropical Storm Alvin just as it reached tropical storm status on May 15 at 2047 UTC (4:47 p.m. EDT). The Atmospheric Infrared Sounder (AIRS) instrument captured an infrared image of the storm. AIRS data showed bands of thunderstorms on the tropical storm’s western side wrapping into the low-level center. Credit: NASA JPL/Ed Olsen

AIRS data is infrared and gives an indication of temperature. With respect to tropical cyclones, AIRS provides temperatures of cloud tops and surrounding ocean surface temperatures, two factors important in determining the strength of a storm and what may happen with it. Cold cloud top temperatures, such as those seen in some of the bands around Alvin were near -62 Fahrenheit (-52 Celsius) and are indicative of strong uplift that can create strong, high thunderstorms with heavy rain potential.

NOAA’s GOES-15 satellite captured a near-infrared view of Tropical Storm Alvin on May 16 at 1200 UTC (8 a.m. EDT) as it continued moving west and away from Mexico. This near-infrared view showed that Alvin had become more tightly wrapped and more organized. According to the National Hurricane Center, satellite imagery of Alvin shows very deep convection resembling a central dense overcast, but noted that the low-level center is displaced a fair distance west of the strongest convection (rising air that creates thunderstorms that make up the tropical cyclone).

AIRS imagery is produced at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. and GOES imagery is created at NASA’s GOES Project, located at NASA’s Goddard Space Flight Center in Greenbelt, Md.

At 5 a.m. EDT on May 15, Alvin had maximum sustained winds near 50 mph (85 kph). It was located far from land, about 705 miles (1,135 km) south-southwest of Manzanillo, Mexico, near 9.1 north latitude and 106.9 west longitude. Alvin was moving to the west-northwest at 10 mph (17 kph) and had a minimum central pressure near 1003 millibars. Twenty four hours before, Alvin’s central pressure was near 1006 millibars. A drop in pressure indicates a strengthening low pressure area.

The National Hurricane Center noted that Alvin will be moving through warm waters over the next couple of days in the Eastern Pacific Ocean and is expected to reach hurricane strength by early on May 18 before weakening over the weekend of May 18 and 19.

Text credit: Rob Gutro
NASA’s Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013_Alvin.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>