Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA uses satellite to unearth innovation in crop forecasting

28.05.2009
Soil moisture is essential for seeds to germinate and for crops to grow. But record droughts and scorching temperatures in certain parts of the globe in recent years have caused soil to dry up, crippling crop production. The falling food supply in some regions has forced prices upward, pushing staple foods out of reach for millions of poor people.

NASA researchers are using satellite data to deliver a kind of space-based humanitarian assistance. They are cultivating the most accurate estimates of soil moisture – the main determinant of crop yield changes – and improving global forecasts of how well food will grow at a time when the world is confronting shortages.

During a presentation this week at the the Joint Assembly of the American Geophysical Union in Toronto, NASA scientist John Bolten described a new modeling product that uses data from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) sensor on NASA's Aqua satellite to improve the accuracy of West African soil moisture. The group produced assessments of current soil moisture conditions, or "nowcasts," and improved estimates by 5 percent over previous methods. Though seemingly small and incremental, the increase can make a big difference in the precision of crop forecasts, Bolten said.

The modeling innovation comes at a time when crop analysts at agencies like the U.S. Department of Agriculture (USDA) are working to meet the food shortage problem head on. They combine soil moisture estimates with weather trends to produce up-to-date forecasts of crop harvests. Those estimates help regional and national officials prepare for and prevent food crises.

"The USDA's estimates of global crop yields are an objective, timely benchmark of food availability and help drive international commodity markets," said Bolten, a physical scientist at NASA's Goddard Space Flight Center, Greenbelt, Md. "But crop estimates are only as good as the observations available to drive the models."

Crop analysts must estimate root-zone soil moisture, the amount of water beneath the surface available for plants to absorb. But estimating the amount of water in soil has posed challenges. Ground-level sensors for rainfall and temperature -- the two key elements for estimating soil moisture – are often sparsely located in the developing nations that need them the most. Hard-to-reach terrain like mountains or desert, lack of local cooperation as well as high maintenance costs, can lead to sensors more than 500 miles apart.

Under a new NASA-USDA collaboration known as the Global Agriculture Monitoring Project, Bolten and colleagues from the USDA's Agricultural Research Service are using AMSR-E to fill the data gaps with daily soil moisture "snapshots." Since its launch in 2002, the instrument has "seen" through clouds, and light vegetation like crops and grasses to detect the amount of soil moisture beneath Earth's surface.

AMSR-E uses varying frequencies to detect the amount of emitted electromagnetic radiation from the Earth's surface. Within the microwave spectrum, this radiation is closely related to the amount of water that is in the soil, allowing researchers to remotely sense the amount of water in the soil across any geographic landscape.

Following a test of their system over the United States, Bolten's team tracked West African rainfall, temperature, and model assessments of soil moisture with and without the AMSR-E satellite sensor observations. They used West Africa as a model because the landscape provides varying cover, from desert and semi-arid landscape in the north to grasslands, lush forests, and crop land to the south. Rainfall in the region is highly variable yet sparsely monitored by ground-based sensors. They also targeted West Africa to demonstrate the possibility for improving the assessment of drought-caused food shortages on the region's dense population.

"Many developing countries are relying on limited and highly variable water resources," said Bolten. "And typically those same regions don't have adequate ground station data or crop-estimating agencies capable of making reliable production forecasts."

By definition, the severity of agricultural drought is determined by root-zone soil water content. So Bolten's satellite-driven boost to root-zone soil moisture prediction also directly improves drought monitoring. And Bolten says results from AMSR-E are just a precursor to dramatic new improvements in data and prediction accuracy researchers expect from the Soil Moisture Active and Passive satellite, slated to launch in 2013.

Food reserves are at their lowest level in 30 years, according to the United Nations World Food Program, putting the world's 1 billion poorest people most at risk. Prices for wheat, rice, and corn have more than doubled in the last 24 months, hitting countries like Haiti, Bangladesh, and Burkina Faso the hardest. And the U.S. is not unaffected -- drought in 2008 led to an estimated $1.1 billion in crop losses in Texas alone.

"This advance is making it possible for us to do our job in a more precise way," said Curt Reynolds, a crop analyst for the USDA's Foreign Agricultural Service in Washington. "We plan to make NASA's soil moisture information available to commodity markets, traders, agricultural producers, and policymakers through our Crop Explorer Web site."

Written by:
Gretchen Cook-Anderson
NASA Earth Science News Team

Sarah DeWitt | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/crop_forecast.html

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>