Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Satellite Sees Tropical Storm Toraji's Concentrated Center Approaching Japan

04.09.2013
NASA satellite imagery showed strong thunderstorms circled Tropical Storm Toraji's center as the storm approached southern Japan today.

A visible image of Tropical Storm Toraji was captured on Sept. 3 at 02:10 UTC/Sept. 2 at 10:10 p.m. is it continued moving north past eastern China and approached southern Japan.


This visible image of Tropical Storm Toraji was captured on Sept. 3 at 02:10 UTC by the MODIS instrument that flies aboard NASA's Terra satellite. Toraji was approaching southern Japan.
Image Credit: NASA Goddard MODIS Rapid Response Team

The image was taken by the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Terra satellite. The image showed strong thunderstorms wrapped around the center of the tropical storm. Bands of thunderstorms wrapping into the center from the north extended over Kyushu. Kyushu is the third largest island of Japan and is farthest southwest of Japan's four main islands.

At 1500 UTC/11 a.m. EDT on Monday, Sept. 2, Toraji had maximum sustained winds near 35 knots/40 mph/64 kph, so it was a minimal tropical storm. It was located about 100 miles northwest of Kadena Air Base, Okinawa, near 27.7 north and 126.5 west. Toraji was generating 13-foot/3.9-meter-high seas. That day, infrared satellite data from the MODIS instrument aboard NASA's Aqua satellite showed strong bands of thunderstorms wrapping around the southeastern and eastern quadrant of the storm, and spinning into the low-level center of circulation. Aqua passed over Toraji on Sept. 2 at 1328 UTC/9:28 a.m. EDT.

By Monday, Sept. 3 at 1500 UTC/11 a.m. EDT, Toraji's maximum sustained winds increased to 50 knots/57.5 mph/92.6 kph. The strongest winds are in the northeastern quadrant of the storm. Toraji moved closed to Kyushu and was centered near 30.5 north and 129.3 east, about 172 nautical miles/198 miles/318 km south-southwest of Sasebo, Japan. Toraji is moving to the northeast at 9 knots/10.3 mph/16.6 kph.

Wind shear has increased from the southwest today, Sept. 3. A deep layered mid-latitude trough (elongated area of low pressure) located over the Yellow Sea has created strong vertical wind shear. Winds are blowing from the southwest at up to 30 knots/34.5 mph/55.5 kph.

Toraji is now expected to make landfall in Kyushu and move back over open waters in the Sea of Japan where it is expected to parallel the western coast of Japan. It is expected to begin interacting with mid-level westerly winds and the Baroclinic Zone and become extra-tropical later today.

According to NOAA, the Baroclinic Zone is a region in which a temperature gradient exists on a constant pressure surface. Baroclinic zones are favored areas for strengthening and weakening systems; barotropic systems, on the other hand, do not exhibit significant changes in intensity. Also, wind shear is characteristic of a baroclinic zone, and wind shear can tear tropical cyclones apart.

Between the increased wind shear from the southwest and the interaction with the land (Kyushu), Tropical Storm Toraji is not expected to intensify before making landfall.

Text credit: Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/toraji/

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>