Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Observes Ash Plume of Icelandic Volcano

20.04.2010
Two NASA Satellites Capture Last Three Days of Eyjafjallajökull's Ash Plume

NASA's Aqua and Terra satellites fly around the world every day capturing images of weather, ice and land changes. Over the last three days these satellites have provided visible and infrared imagery of the ash plume from the Eyjafjallajökull volcano in Iceland.


Eyjafjallajökull is pronounced similar to "EYE-a-fyat-la-yu-goot," and it is still spewing ash into the atmosphere. Volcanic eruptions are important sources of gases, such as sulphur dioxide (SO2) and volcanic ash (aerosols) in the atmosphere.

The Moderate Resolution Imaging Spectroradiometer, also known as MODIS, is an instrument that flies aboard both NASA's Aqua and Terra satellites. MODIS captures daily visible and infrared earth imagery and has provided daily images of the volcanic plume. NASA’s MODIS instrument and the Atmospheric Infrared Sounder (AIRS) instrument, both of which fly on Aqua, contain sulfur dioxide (SO2) absorption channels to enhance volcanic ash detection. These applications have significantly improved upon existing satellite-based multi-spectral techniques in identifying and tracking ash clouds and estimating their height.

On Saturday, April 17 at 13:20 UTC (9:20 a.m. EDT), Aqua captured a visible image of the ash plume so clearly that in the satellite image a viewer could see the billowing cloud spewing from the volcano and blowing almost due south before turning east over the Atlantic Ocean.

On Sunday, April 18 at 12:05 UTC (8:05 a.m. EDT), NASA's Terra satellite flew over the volcano and captured an image of the brown ash cloud mostly obscured by higher clouds. The brown plume was partly visible underneath the high clouds.

By Monday morning, April 19 at 12:50 UTC (8:50 a.m. EDT) the high clouds had cleared, and the brown line of spewed volcanic ash was visible once again blowing south, then turning east toward the United Kingdom.

The ash cloud basically consists of fine particles of pulverized rock. Volcanic ash is a rare but potentially catastrophic hazard to aviation. Encounters with volcanic ash while in flight can result in engine failure from particulate ingestion and viewing obstruction of the cockpit widescreen from etching by the acidic aerosols. Volcanic Ash Advisory Centers were established to monitor the air space in areas prone to eruptions and to issue volcanic ash warnings.

NASA works with other agencies on using satellite observations to aid in the detection and monitoring of aviation hazards caused by volcanic ash. For more on this NASA program, visit: http://science.larc.nasa.gov/asap/research-ash.html.

Eyjafjallajökull is one of Iceland's smaller glaciers, located north of Skógar. Skógar is a small Icelandic village with a population of roughly 25 located at the south of the glacier. Eyjafjallajökull lies west of another glacier called Mýrdalsjökull.

The MODIS Rapid Response System was developed to provide daily satellite images of the Earth's landmasses in near real time. True-color, photo-like imagery and false-color imagery are available within a few hours of being collected, making the system a valuable resource. The MODIS Rapid Response Team that generates the images is located at NASA's Goddard Space Flight Center in Greenbelt, Md.

Text credit: Rob Gutro, NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/iceland-volcano-plume.html

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>