Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Catches Tropical Storm Leslie and Hurricane Michael in the Atlantic

11.09.2012
Satellite images from two NASA satellites were combined to create a full picture of Tropical Storm Leslie and Hurricane Michael spinning in the Atlantic Ocean. Imagery from NASA's Aqua and Terra satellites showed Leslie now past Bermuda and Michael in the north central Atlantic, and Leslie is much larger than the smaller, more powerful Michael.

Images of each storm were taken by the Moderate Resolution Imaging Spectroradiometer, or MODIS instrument that flies onboard both the Aqua and Terra satellites. Both satellites captured images of both storms on Sept. 7 and Sept. 10. The image from Sept. 7 showed a much more compact Michael with a visible eye. By Sept. 10, the eye was no longer visible in Michael and the storm appeared more elongated from south to north.

Leslie Moves Past Bermuda Heads to North Atlantic

On Sept. 8 at 5 p.m. Leslie was a tropical storm with maximum sustained winds near 55 knots. It was about 240 miles (390 km) south-southeast of Bermuda near 29.4 North latitude and 62.5 West longitude. Leslie was moving north and expected to pass to the east of or close to Bermuda later in the day. A tropical storm warning was in force for Bermuda on Sept. 8 and 9, and forecasters at the National Hurricane Center expected rainfall totals of 1 to 2 inches in Bermuda.

By Sept. 9 at 5 p.m. EDT, Leslie had passed to the east of Bermuda and was centered about 175 miles (280 km) east-northeast of the island, near 33.4 North and 61.2 East. Leslie's maximum sustained winds were near 60 mph (95 kmh) as it continued moving to the north at 14 mph (22 kmh).

By Monday, Sept. 10, Leslie had moved north of Bermuda and was about 805 miles (1,300 km) south-southwest of Cape Race, Newfoundland, Canada, near 36.5 North latitude and 60.8 West longitude. Leslie was moving to the north-northeast at 18 mph (30 kmh) and had maximum sustained winds near 60 mph (95 kmh).

MODIS satellite data shows that Leslie has one main band of powerful thunderstorms and heavy rainfall, located to the northeast quadrant of the storm.

Watches have now been posted for Newfoundland, Canada as Leslie tracks northward. A hurricane watch is now in effect in Newfoundland, from Stones Cove to Charlottetown. A hurricane watch means that hurricane conditions are possible within the watch area, in this case within 24 to 36 hours, according to the National Hurricane Center.

In addition, a tropical storm watch is in effect for Newfoundland, from Indian Harbor to Stones Cove and from Fogo Island to Charlottetown.

Monday, Sept. 10 is expected to be Leslie's last day in warm waters and low-wind shear. After today the storm is forecast to move into cooler waters and the wind shear is expected to kick up. Those are two factors that weaken a tropical cyclone. Leslie is expected to start transitioning from a warm core system to a cold core system later on Sept. 10, which means the storm will be undergoing a change into an extra-tropical storm.

Michael, Once "Wide-Eyed," Now Weakening from Atmosphere and Ocean

Hurricane Michael experienced some adjustments in "vision" over the weekend when the storm's eye grew wider. On Sept. 8, Michael was still a hurricane with maximum sustained winds near 90 knots (150 kmh). Michael was located near 33.1 North latitude and 42.3 West longitude, about 925 miles (1,485 km) west-southwest of the Azores. Michael's tropical-storm-force wind field was about 70 miles (110 km) out from the center, making the storm about 140 miles (220 km) in diameter. Michael was weakening slowly due to atmospheric conditions and cooler waters and by Sept. 9, Michael's maximum sustained winds were still near 90 mph (150 kmh) when it was 990 miles (1,590 km) west-southwest of the Azores islands. On Sunday, Michael's eye widened from 10 miles in diameter to 30 miles in diameter, as was seen in satellite imagery.

By Monday, Sept. 10, Michael's maximum sustained winds at 5 a.m. EDT were near 80 mph (130 kmh). Michael was centered about 1,065 miles (1,715 km) west of the Azores Islands near 33.5 North and 45.2 West. Michael was moving to the west at 7 mph (11 kmh) and is expected to turn northwestward later on Sept. 10, followed by a turn to the north and northeast. Michael could become a tropical storm by the end of the day on Sept. 10, according to the National Hurricane Center.

Another Storm Brewing in the Eastern Atlantic

Satellite imagery showed that another tropical depression may be forming in the eastern Atlantic. The low, called System 90L appears more organized on Monday, Sept. 10. It is located about 855 miles west of the Cape Verde Islands and is being carefully watched. The National Hurricane Center gives it a 90 percent chance of becoming a depression later on Sept. 1 as it moves west-northwestward at 15 to 20 mph.

To see the Sept. 10 MODIS image of Leslie and Michael, visit: http://lance-modis.eosdis.nasa.gov/cgi-bin/imagery/single.cgi?image=LeslieMichael.A2012253.1650.4km.jpg

To see the Sept. 7 MODIS image of Leslie and Michael, visit: http://lance-modis.eosdis.nasa.gov/cgi-bin/imagery/single.cgi?image=LeslieMichael.A2012251.1525.4km.jpg

Text Credit: Rob Gutro
NASA Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Michael.html

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>