Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Begins Hurricane Mission with Global Hawk Flight to Cristobal


The first of two unmanned Global Hawk aircraft landed at NASA's Wallops Flight Facility in Wallops Island, Virginia, on Aug. 27 after surveying Hurricane Cristobal for the first science flight of NASA's latest hurricane airborne mission.

NASA's airborne Hurricane and Severe Storm Sentinel, or HS3, mission returns to NASA Wallops for the third year to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. HS3 is a collaborative effort that brings together several NASA centers with federal and university partners.

The NASA Global Hawk 872 lands at 7:43 a.m. EDT, August 27, at the Wallops Flight Facility in Virginia following a 22-hour transit flight from its home base at the Armstrong Flight Research Center in California.

Image Credit: NASA/ Brea Reeves

The Global Hawk flew this lawnmower flight pattern over Hurricane Cristobal on August 26, 2014. Credit:

Image Credit: NASA

The two unmanned Global Hawks participating in HS3 are based at NASA's Armstrong Flight Research Center at Edwards Air Base, California, but will be temporarily housed at NASA Wallops for the duration of the HS3 mission which runs through Sept. 29. That window for the mission coincides with the peak of the Atlantic hurricane season that runs from June 1 to Nov. 30.

NASA Global Hawk 872 departed NASA Armstrong on the morning of Aug. 26 and arrived at NASA Wallops at 7:43 a.m. EDT on Aug. 27. Global Hawk number 871 is scheduled to fly to Wallops within a week. 

... more about:
»Ames »Atlantic »Earth »HS3 »Hurricane »NASA »cyclones »fly »hurricane »storms »tropical
Tropical Storm Cristobal became a hurricane late on August 25 as it was moving through the Bahamas. During the Global Hawk's 22 hour mission it flew a "lawnmower" or back and forth pattern over Hurricane Cristobal while gathering data using dropsondes and two other instruments. There were 83 dropsondes loaded in the aircraft, with two of them were dropped over the Gulf of Mexico and the other 81 dropsondes dropped over Cristobal.  A dropsonde is a device that measures winds, temperature, pressure and humidity as it falls from the aircraft to the surface. 

“The instruments are tested and then integrated onto each Global Hawk at Armstrong,” said Marilyn Vasques, HS3 Project Manager of NASA Ames. Before the cross-country flights, the ground operations center at Wallops tested the various instruments aboard both aircraft while they were still at Armstrong. “After integration and outdoor tests we conduct a Combined Systems Test on the ground as well as a test flight near Armstrong before the instruments and aircraft are ready to transit” explained Vasques. Checking the performance of the instruments over that long distance while they were at a NASA center was critical to ensure they would operate correctly while in-flight over Atlantic hurricanes.

Now that the first Global Hawk is at Wallops, the mission will investigate any significant disturbances that might develop in the western Atlantic. The HS3 mission will investigate disturbances before they become depressions to examine how a storm forms. The mission is also looking for conditions that favor (or promote) rapid intensification of tropical cyclones.

"Twice a day we hold weather briefings looking for storms or disturbances that could become storms," said Scott Braun, HS3 Principal Investigator from NASA's Goddard Space Flight Center in Greenbelt, Maryland, working at Wallops during the mission. "We evaluate the targets in terms of our science objectives and determine which one best addresses those objectives. We factor in stage of the life cycle of the storm, likelihood of formation or intensification, interaction with the Saharan Air Layer, among other things."

During the mission period, the Global Hawks will be operated from Wallops where they will depart and fly over tropical cyclones in the Atlantic, analyzing the storms with six scientific instruments. The East Coast NASA location makes accessing Atlantic tropical cyclones easier and allows for more science data collection than if they were to fly from the West Coast. Each aircraft has an 11,000-nautical-mile range and can fly for up to 26 hours.

One Global Hawk will carry three instruments to examine the environment around the storms, including the Scanning High-resolution Interferometer Sounder (S-HIS), the Advanced Vertical Atmospheric Profiling System (AVAPS), also known as dropsondes, and the Cloud Physics Lidar (CPL). 

The second Global Hawk will focus on the inner region of the storms to measure wind and precipitation, surface winds, and atmospheric temperature and humidity. It will carry the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) conically scanning Doppler radar, the Hurricane Imaging Radiometer (HIRAD), and the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) microwave sounder.

The HS3 mission is funded by NASA Headquarters and overseen by NASA's Earth System Science Pathfinder Program at NASA's Langley Research Center in Hampton, Virginia. Itis one of five large airborne campaigns operating under the Earth Venture program.

The HS3 mission also involves collaborations with partners including the National Centers for Environmental Prediction, Naval Postgraduate School, Naval Research Laboratory, NOAA's Unmanned Aircraft System Program, Hurricane Research Division and Earth System Research Laboratory, Northrop Grumman Space Technology, National Center for Atmospheric Research, State University of New York at Albany, University of Maryland - Baltimore County, University of Wisconsin, and University of Utah. The HS3 mission is managed by the Earth Science Project Office at NASA Ames Research Center, Moffett Field, California.

For more information about NASA's HS3 mission, visit:

For more information about an HS3 sonde, visit:

Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!

Further reports about: Ames Atlantic Earth HS3 Hurricane NASA cyclones fly hurricane storms tropical

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>