Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Begins Hurricane Mission with Global Hawk Flight to Cristobal

28.08.2014

The first of two unmanned Global Hawk aircraft landed at NASA's Wallops Flight Facility in Wallops Island, Virginia, on Aug. 27 after surveying Hurricane Cristobal for the first science flight of NASA's latest hurricane airborne mission.

NASA's airborne Hurricane and Severe Storm Sentinel, or HS3, mission returns to NASA Wallops for the third year to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. HS3 is a collaborative effort that brings together several NASA centers with federal and university partners.


The NASA Global Hawk 872 lands at 7:43 a.m. EDT, August 27, at the Wallops Flight Facility in Virginia following a 22-hour transit flight from its home base at the Armstrong Flight Research Center in California.

Image Credit: NASA/ Brea Reeves


The Global Hawk flew this lawnmower flight pattern over Hurricane Cristobal on August 26, 2014. Credit:

Image Credit: NASA

The two unmanned Global Hawks participating in HS3 are based at NASA's Armstrong Flight Research Center at Edwards Air Base, California, but will be temporarily housed at NASA Wallops for the duration of the HS3 mission which runs through Sept. 29. That window for the mission coincides with the peak of the Atlantic hurricane season that runs from June 1 to Nov. 30.

NASA Global Hawk 872 departed NASA Armstrong on the morning of Aug. 26 and arrived at NASA Wallops at 7:43 a.m. EDT on Aug. 27. Global Hawk number 871 is scheduled to fly to Wallops within a week. 

... more about:
»Ames »Atlantic »Earth »HS3 »Hurricane »NASA »cyclones »fly »hurricane »storms »tropical
Tropical Storm Cristobal became a hurricane late on August 25 as it was moving through the Bahamas. During the Global Hawk's 22 hour mission it flew a "lawnmower" or back and forth pattern over Hurricane Cristobal while gathering data using dropsondes and two other instruments. There were 83 dropsondes loaded in the aircraft, with two of them were dropped over the Gulf of Mexico and the other 81 dropsondes dropped over Cristobal.  A dropsonde is a device that measures winds, temperature, pressure and humidity as it falls from the aircraft to the surface. 

“The instruments are tested and then integrated onto each Global Hawk at Armstrong,” said Marilyn Vasques, HS3 Project Manager of NASA Ames. Before the cross-country flights, the ground operations center at Wallops tested the various instruments aboard both aircraft while they were still at Armstrong. “After integration and outdoor tests we conduct a Combined Systems Test on the ground as well as a test flight near Armstrong before the instruments and aircraft are ready to transit” explained Vasques. Checking the performance of the instruments over that long distance while they were at a NASA center was critical to ensure they would operate correctly while in-flight over Atlantic hurricanes.

Now that the first Global Hawk is at Wallops, the mission will investigate any significant disturbances that might develop in the western Atlantic. The HS3 mission will investigate disturbances before they become depressions to examine how a storm forms. The mission is also looking for conditions that favor (or promote) rapid intensification of tropical cyclones.

"Twice a day we hold weather briefings looking for storms or disturbances that could become storms," said Scott Braun, HS3 Principal Investigator from NASA's Goddard Space Flight Center in Greenbelt, Maryland, working at Wallops during the mission. "We evaluate the targets in terms of our science objectives and determine which one best addresses those objectives. We factor in stage of the life cycle of the storm, likelihood of formation or intensification, interaction with the Saharan Air Layer, among other things."

During the mission period, the Global Hawks will be operated from Wallops where they will depart and fly over tropical cyclones in the Atlantic, analyzing the storms with six scientific instruments. The East Coast NASA location makes accessing Atlantic tropical cyclones easier and allows for more science data collection than if they were to fly from the West Coast. Each aircraft has an 11,000-nautical-mile range and can fly for up to 26 hours.

One Global Hawk will carry three instruments to examine the environment around the storms, including the Scanning High-resolution Interferometer Sounder (S-HIS), the Advanced Vertical Atmospheric Profiling System (AVAPS), also known as dropsondes, and the Cloud Physics Lidar (CPL). 

The second Global Hawk will focus on the inner region of the storms to measure wind and precipitation, surface winds, and atmospheric temperature and humidity. It will carry the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) conically scanning Doppler radar, the Hurricane Imaging Radiometer (HIRAD), and the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) microwave sounder.

The HS3 mission is funded by NASA Headquarters and overseen by NASA's Earth System Science Pathfinder Program at NASA's Langley Research Center in Hampton, Virginia. Itis one of five large airborne campaigns operating under the Earth Venture program.

The HS3 mission also involves collaborations with partners including the National Centers for Environmental Prediction, Naval Postgraduate School, Naval Research Laboratory, NOAA's Unmanned Aircraft System Program, Hurricane Research Division and Earth System Research Laboratory, Northrop Grumman Space Technology, National Center for Atmospheric Research, State University of New York at Albany, University of Maryland - Baltimore County, University of Wisconsin, and University of Utah. The HS3 mission is managed by the Earth Science Project Office at NASA Ames Research Center, Moffett Field, California.

For more information about NASA's HS3 mission, visit:  http://www.nasa.gov/hs3

For more information about an HS3 sonde, visit:  http://www.nasa.gov/content/goddard/what-the-heck-is-a-dropsonde/#

Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!

Further reports about: Ames Atlantic Earth HS3 Hurricane NASA cyclones fly hurricane storms tropical

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>