Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's New Way to Track Formaldehyde

10.08.2012
NASA scientist Tom Hanisco is helping to fill a big gap in scientists' understanding of how much urban pollution -- and more precisely formaldehyde -- ultimately winds up in Earth's upper atmosphere where it can wreak havoc on Earth's protective ozone layer.

He and his team at NASA's Goddard Space Flight Center in Greenbelt, Md., have developed an automated, lightweight, laser-induced fluorescence device that measures the levels of this difficult-to-measure organic compound in the lower troposphere and then again at much higher altitudes. The primary objective is determining how much pollution a storm can transport through convection and then using those insights to improve chemistry-climate models. "It's a major problem in modeling knowing how to treat transport and clouds," Hanisco explained.


University of Maryland graduate student Heather Arkinson is shown here monitoring the In-Situ Formaldehyde Instrument, which she helped to demonstrate on a NASA DC-8. Credit: NASA


This image shows the new air-sampling system that is more efficient at drawing in air and preventing particles from sticking and potentially contaminating formaldehyde measurements. Credit: NASA

In the spring, he flew the In-Situ Airborne Formaldehyde Instrument for the first time on a NASA DC-8 research aircraft, a former passenger airplane that can fly up to 43,000 feet.

Size and Sensitivity

"People like this instrument because it's small, sensitive, and easy to maintain," said Hanisco. The instrument weighs only 60 pounds, and therefore is easily installed inside other research aircraft, including NASA's ER-2, Global Hawk, and WB57, which fly at much higher altitudes. In addition, it's automated and doesn't require anyone onboard to operate it, Hanisco said.

Prior to its development, only one other airborne instrument could measure formaldehyde. That instrument, however, weighed 600 pounds, required an onboard operator, and used a less-sensitive measurement technique -- absorption spectroscopy -- to gather data.

"I've been doing laser-induced fluorescence on other molecules for a while," Hanisco said, explaining why he sought and received Goddard Internal Research and Development funds to apply the measurement technique to a formaldehyde-sensitive instrument. "Formaldehyde isn't measured well at high altitudes. There was a real need for improvement."

With laser-induced fluorescence (LIF), a laser first illuminates the species of interest and "then you watch it fluoresce. It is a single photon-counting instrument," Hanisco said. Consequently, it's faster and more sensitive -- even at concentrations in the parts per trillion, he said.

The DC-8 campaign in Kansas, sponsored by the National Center for Atmospheric Research's Deep Convective Clouds and Chemistry Project, bore out the wisdom of his pursuit, proving that his instrument offered a factor-of-10 improvement in size, sensitivity, and complexity. During that campaign, a DC-8 flew as low as 500 feet above the ground and sampled air entering a storm. It then spiraled up to 30,000 to 40,000 feet and measured the air coming out at the top of the storm.

'Big Step Forward'

The instrument found that 30 to 40 percent of the formaldehyde produced in the "boundary" layer -- the lowest part of the troposphere closest to Earth's surface -- was transported to the upper troposphere during storms. "That number is a rough guideline, but we didn't have it before. Every storm is different, but knowing how much air gets through is a big step forward."

Hanisco attributes the instrument's success to its greatly simplified design and a new fiber-laser system that is smaller and less expensive than those used in other LIF-type instruments. He also attributes its success to a new air-sampling system, which features a glass- and Teflon-coated tube that draws in and directs air into the instrument's detection cell. Though the polymer-coated sampling system allows air to flow quickly, its surface prevents particles from sticking -- particularly useful because they could corrupt results. "We had to work hard to ensure that the sampling system was every bit as good as the detection," Hanisco said.

Hanisco anticipates many other flight opportunities in the future. "There was a real need for this instrument. There aren't a lot of instruments out there doing this."

Tiffany Blackburn
NASA's Goddard Space Flight Center, Greenbelt, Md.

Lori Keesey | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/technology/features/formaldehyde-track.html

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>