Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA's New Way to Track Formaldehyde

NASA scientist Tom Hanisco is helping to fill a big gap in scientists' understanding of how much urban pollution -- and more precisely formaldehyde -- ultimately winds up in Earth's upper atmosphere where it can wreak havoc on Earth's protective ozone layer.

He and his team at NASA's Goddard Space Flight Center in Greenbelt, Md., have developed an automated, lightweight, laser-induced fluorescence device that measures the levels of this difficult-to-measure organic compound in the lower troposphere and then again at much higher altitudes. The primary objective is determining how much pollution a storm can transport through convection and then using those insights to improve chemistry-climate models. "It's a major problem in modeling knowing how to treat transport and clouds," Hanisco explained.

University of Maryland graduate student Heather Arkinson is shown here monitoring the In-Situ Formaldehyde Instrument, which she helped to demonstrate on a NASA DC-8. Credit: NASA

This image shows the new air-sampling system that is more efficient at drawing in air and preventing particles from sticking and potentially contaminating formaldehyde measurements. Credit: NASA

In the spring, he flew the In-Situ Airborne Formaldehyde Instrument for the first time on a NASA DC-8 research aircraft, a former passenger airplane that can fly up to 43,000 feet.

Size and Sensitivity

"People like this instrument because it's small, sensitive, and easy to maintain," said Hanisco. The instrument weighs only 60 pounds, and therefore is easily installed inside other research aircraft, including NASA's ER-2, Global Hawk, and WB57, which fly at much higher altitudes. In addition, it's automated and doesn't require anyone onboard to operate it, Hanisco said.

Prior to its development, only one other airborne instrument could measure formaldehyde. That instrument, however, weighed 600 pounds, required an onboard operator, and used a less-sensitive measurement technique -- absorption spectroscopy -- to gather data.

"I've been doing laser-induced fluorescence on other molecules for a while," Hanisco said, explaining why he sought and received Goddard Internal Research and Development funds to apply the measurement technique to a formaldehyde-sensitive instrument. "Formaldehyde isn't measured well at high altitudes. There was a real need for improvement."

With laser-induced fluorescence (LIF), a laser first illuminates the species of interest and "then you watch it fluoresce. It is a single photon-counting instrument," Hanisco said. Consequently, it's faster and more sensitive -- even at concentrations in the parts per trillion, he said.

The DC-8 campaign in Kansas, sponsored by the National Center for Atmospheric Research's Deep Convective Clouds and Chemistry Project, bore out the wisdom of his pursuit, proving that his instrument offered a factor-of-10 improvement in size, sensitivity, and complexity. During that campaign, a DC-8 flew as low as 500 feet above the ground and sampled air entering a storm. It then spiraled up to 30,000 to 40,000 feet and measured the air coming out at the top of the storm.

'Big Step Forward'

The instrument found that 30 to 40 percent of the formaldehyde produced in the "boundary" layer -- the lowest part of the troposphere closest to Earth's surface -- was transported to the upper troposphere during storms. "That number is a rough guideline, but we didn't have it before. Every storm is different, but knowing how much air gets through is a big step forward."

Hanisco attributes the instrument's success to its greatly simplified design and a new fiber-laser system that is smaller and less expensive than those used in other LIF-type instruments. He also attributes its success to a new air-sampling system, which features a glass- and Teflon-coated tube that draws in and directs air into the instrument's detection cell. Though the polymer-coated sampling system allows air to flow quickly, its surface prevents particles from sticking -- particularly useful because they could corrupt results. "We had to work hard to ensure that the sampling system was every bit as good as the detection," Hanisco said.

Hanisco anticipates many other flight opportunities in the future. "There was a real need for this instrument. There aren't a lot of instruments out there doing this."

Tiffany Blackburn
NASA's Goddard Space Flight Center, Greenbelt, Md.

Lori Keesey | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>