Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Aqua satellite sees weaker Tropical Depression Errol crossing West Timor

19.04.2011
NASA's Aqua satellite captured an infrared image of Tropical Depression Errol's warming cloud temperatures as it was crossing the southern tip of West Timor today.

West Timor is the western and Indonesian portion of the island of Timor. To the east lies the Timor Sea, to the west is the Southern Indian Ocean.


AIRS instrument aboard NASA's Aqua satellite captured an infrared image on April 18 at 04:53 UTC (12:53 a.m. EDT) that showed very little strong (purple) convection remained in Errol and most cloud tops were warming (blue). Credit: NASA/JPL, Ed Olsen

The Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite captured an infrared image on April 18 at 04:53 UTC (12:53 a.m. EDT) that showed very little strong convection (rapidly rising air that forms thunderstorms) remained in Errol. The strongest areas of convection had cloud-top temperatures as cold as -63F/-52C. However, AIRS data shows that much of the cloud top temperatures in the depression have since warmed.

Cloud-top temperatures are important because they tell forecasters how high thunderstorms are, and the higher the thunderstorm, the colder the cloud tops and the more powerful the thunderstorms. Warming cloud top temperatures mean lower cloud heights and indicate that the storm is growing weaker. It means that there's not as much power to lift the air up to create the thunderstorms that power it.

As usually happens when a tropical cyclone crosses land, it weakens because it is cut-off from the warm ocean waters that power it. In addition, vertical wind shear has increased to 15 knots (17 mph/28 kmh) providing additional weakening.

Tropical Depression Errol had maximum sustained winds near 30 knots (34 mph/55 kmh) on Monday, April 18 at 1200 UTC (8 a.m. EDT). It was located about 35 nautical miles west-northwest of Kupang, West Timor near 10.0 South and 122.9 East. It was moving northwestward at 1 knot (1 mph/2 kmh). By 12 p.m. EDT on April 18, Kupang, West Timor, Indonesia was reporting cloudy skies and rising pressure, indicating that Tropical Depression Errol was moving away.

Errol is encountering wind shear and is expected to continue weakening as it moves west to west-southwest. The Joint Typhoon Warning Center forecasters note that in addition to being weakened from tracking over land, and encountering increased wind shear, drier air is moving in, which will sap the moisture and ability to generate thunderstorms within. Errol is forecast to dissipate in the open waters of the Southern Indian Ocean in a day or two.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>