Multifold increase in heat extremes by 2040

A few decades ago, they were practically absent. Today, due to man-made climate change monthly heat extremes in summer are already observed on 5 percent of the land area.

This is projected to double by 2020 and quadruple by 2040, according to a study by scientists of the Potsdam Institute for Climate Impact Research (PIK) and the Universidad Complutense de Madrid (UCM). A further increase of heat extremes in the second half of our century could be stopped if global greenhouse-gas emissions would be reduced substantially.

“In many regions, the coldest summer months by the end of the century will be hotter than the hottest experienced today – that’s what our calculations show for a scenario of unabated climate change,” says Dim Coumou of PIK. “We would enter a new climatic regime.” The scientists focus on heat waves that exceed the usual natural variability of summer month temperatures in a given region by a large margin, namely so called 3-sigma events. These are periods of several weeks that are three standard deviations warmer than the normal local climate – often resulting in harvest losses, forest fires, and additional deaths in heat-struck cities.

Such heat extremes might cover 85 percent of the global land area in summer by 2100, if CO2 continues to be emitted as it is today, the study shows. In addition to this, even hotter extremes that are virtually non-existent today would affect 60 percent of the global land area.

While climate change mitigation could prevent this, the projected increase up to mid-century is expected to happen regardless of the emissions scenario. “There’re already so much greenhouse-gases in the atmosphere today that the near-term increase of heat extremes seems to be almost inevitable,” Coumou says. This is important information for developing adaptation measures in the affected sectors.

As the study defines a heat extreme based on the natural variability a region has experienced in the past, the absolute temperatures of this type of event will differ in different regions of the world. For instance the observed Russian heat wave brought an increase of the monthly average temperature by 7 degrees Celsius in Moscow and daily peak temperatures above 40 degrees. In tropical regions like e.g. Southern India or Brazil, natural variability is much smaller than in the moderate zones, hence 3-sigma events are not as large a deviation in absolute temperatures.

“In general, society and ecosystems have adapted to extremes experienced in the past and much less so to extremes outside the historic range,” Alexander Robinson of UCM says. “So in the tropics, even relatively small changes can yield a big impact – and our data indicates that these changes, predicted by earlier research, in fact are already happening.”

The scientists combined results of a comprehensive set of state-of-the-art climate models, the CMIP5 ensemble, thereby reducing the uncertainty associated with each individual model. “We show that these simulations capture the observed rise in heat extremes over the past 50 years very well.” Robinson points out. “This makes us confident that they’re able to robustly indicate what is to be expected in future.”

Article: Coumou, D., Robinson, A. (2013): Historic and future increase in the global land area affected by monthly heat extremes. Environmental Research Letters 8 034018. [doi:10.1088/1748-9326/8/3/034018]

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Follow us on Twitter: PIK_Climate

Media Contact

Jonas Viering PIK Potsdam

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors