Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Six Million Years of African Savanna

05.08.2011
Open, grassy environments accompanied human evolution

Scientists using chemical isotopes in ancient soil to measure prehistoric tree cover--in effect, shade--have found that grassy, tree-dotted savannas prevailed at most East African sites where human ancestors and their ape relatives evolved during the past six million years.

"We've been able to quantify how much shade was available in the geological past," says University of Utah geochemist Thure Cerling, lead author of a paper titled "Woody cover and hominin environments in the past 6 million years" on the results in this week's issue of the journal Nature.

"It shows there have been open habitats for the last six million years in the environments in East Africa where some of the most significant early human fossils were found.

"Wherever we find human ancestors, we find evidence for open habitats similar to savannas--much more open and savanna-like than forested."

Scientists have spent a century debating the significance of open, savanna landscape in human evolution, including the development of upright walking, increased brain size and tool use.

Part of the problem has been an imprecise definition of "savanna," which has been used to describe "virtually everything between completely open grasslands and anything except a dense forest," Cerling says.

He adds that the most common usage is a fairly open, grassy environment with many scattered trees--a grassland or wooded grassland.

In the study, Cerling and colleagues developed a new way to quantify the openness of tropical landscapes. This is the first method to quantify the amount of canopy cover, the basis for deciding whether something is savanna.

The National Science Foundation (NSF) and the Leakey Foundation funded the study.

"The development of a paleo-shade proxy for soil temperature and woody cover, and its application to ancient fossil sites, reinforces the long-held theory that the roots of human origins are in the open grassland/savanna environments of East Africa," says H. Richard Lane, program director in NSF's Division of Earth Sciences.

Adds Kaye Reed of NSF's Division of Behavioral and Cognitive Sciences, "These investigators have done an amazing job of collecting modern comparative isotope and soil temperature samples to compare with paleosol [fossil soil] samples from hominin localities. Their newly developed method for calculating 'paleo-shade' is very innovative."

Cerling does not dispute that East African savannas became more expansive within the past two million years, or that human ancestors and relatives likely spent time in narrow "gallery forests" along river corridors.

But he says the new method shows that grasslands and wooded grasslands--savannas--have prevailed for more than six million years in the cradle of humanity, with tree cover less than about 40 percent at most sites.

By definition, woodland has more than 40 percent tree cover; forest has more than 80 percent tree cover.

"In some periods, it was more bushy, and other times it was less bushy," he says.

"Hardly anything could have been called a dense forest, but we can show some periods where certain environments were consistently more wooded than others.

"We find hominins in both places. How early hominins partitioned their time between 'more open' and 'more closed' habitats is still an open question."

Cerling says that even sparse woody canopy provided hominins with shade, some foods and refuge from predators.

Fossil evidence of hominins dates back 4.3 million years and possibly 6 million years, Cerling says. The new method was used to look for and find savanna up to 7.4 million years ago.

"Currently, many scientists think that before 2 million years ago, the region was forested, and that savanna conditions have been present only for the past 2 million years," Cerling says. "This study shows that during the development of bipedalism [about 4 million years ago] open conditions were present, even predominant."

Cerling conducted the study with biologists Samuel Andanje and David Kimutai Korir of the Kenya Wildlife Service; geologist Michael Bird of James Cook University, Cairns, Australia; University of Utah graduate students William Mace, Anthony Macharia and Christopher Remien; and Jonathan Wynn of the University of South Florida, Naomi Levin of Johns Hopkins University and Jay Quade of the University of Arizona.

The new method was developed by correlating carbon isotope ratios in 3,000 modern soil samples with satellite photos of tree and vegetation cover at 75 tropical sites worldwide--half in Africa--representing closed forest to open grassland.

That allowed scientists to determine the percent of tree and woody shrub cover millions of years ago based on carbon isotope ratios in fossil soils known as paleosols.

"This study is based on the geological axiom that the present is the key to the past," says Cerling. "We assume soils in the past had similar relationships to vegetation as what we observe today."

The researchers collected soil samples at Kenyan and Ethiopian sites and used published data on soil samples collected by others during the past decade at sites throughout the tropics.

Modern soil samples came from national parks and reserves and non-agricultural areas so that carbon isotope ratios reflected natural vegetation.

The ratio of rare carbon-13 to common carbon-12 in decayed plant material in soils reveals the extent to which the landscape was covered by plants that use what is known as the C3 pathway of photosynthesis, versus plants that use C4 photosynthesis.

Trees, shrubs, herbs, forbs and cool-season grasses are C3 plants, which include beans and most vegetables. C4 plants are warm-season or tropical grasses that dominate savannas, and plants called sedges. C4 plants have a higher ratio of carbon-13 than C3 plants.

The isotope composition of fossil soil gives a measure of the total makeup of the ecosystem in terms of how much was canopy versus how much was open landscape, Cerling says.

In a forest, even soil from open gaps shows the C3 signature because of non-woody C3 plants growing there, while on a savanna, soil from under a C3 tree will show the C4 signature because of grasses growing under the tree.

Cerling and colleagues used the new method to analyze fossil soils and infer plant cover back to 7.4 million years ago, a period that includes the time when human ancestors and apes split from a common ancestor.

Their analysis of 1,300 fossil soil samples from sites at or near where human ancestors and their relatives evolved shows that more than 70 percent of the sites had less than 40 percent woody cover, meaning they were wooded grasslands or grasslands. Less than one percent of the samples reflected sites where tree cover exceeded 70 percent.

"Therefore, 'closed' forests (more than 80 percent woody cover) represent a very small fraction of the environments represented by these paleosols," the researchers write.

"We conclude there have been open savannas all the time for which we have hominin fossils in the environments where the fossils were found during the past 4.3 million years--the oldest fossils now accepted as human ancestors," Cerling says.

The researchers also created vegetation chronologies of the Awash Valley of Ethiopia and the Omo-Turkana Basin of Ethiopia and Kenya--home to many fossils of human ancestors, including Ardipithecus, Australopithecus, Paranthropus and our own genus, Homo.

They found that during the past 7.4 million years, woody cover ranged from 75 percent (closed woodlands) down to 5 percent or less (open grasslands), but significant areas with woody cover below 50 percent (savanna woodlands to savanna grasslands) were consistently present.

Fossils of early humans and their ancestors and extinct relatives have been found in both wooded and open environments in East Africa.

Even 4.3-million-year-old Ardipithecus--which lived in the woods, according to its discoverers--had a small component of grasses or other C4 plants in its diet, says Cerling.

"The fact that it had this means it was going into the savanna," he says, "unless it was eating takeout food."

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Lee Siegel, University of Utah (801) 244-8993 leesiegel@ucomm.utah.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>