Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for tracing metal pollution back to its sources

20.11.2008
A new way of pinpointing where zinc pollution in the atmosphere comes from could improve pollution monitoring and regulation, says research out this week in the journal Analytical Chemistry.

Imperial College London researchers say their work is a major breakthrough as current methods for analysing zinc pollution only measure pollution in the atmosphere; they do not trace it back to its source.

Researchers say their method will provide a new tool for policy makers and modellers. A better understanding of zinc pollution sources could inform and improve national and international pollution strategies.

At low levels, zinc is an essential mineral used by plants and animals.
But at higher levels, zinc pollution is suspected of causing cardiovascular, reproductive, immune, and respiratory problems.

Researchers trialled their method on atmospheric samples collected in Sao Paulo, Brazil. They worked in conjunction with researchers from the University of Sao Paulo who wanted to find out where zinc pollution comes from.

The analysis of air samples suggested that a major source of zinc in the city’s atmosphere comes from cars and not from manufacturers as previously thought.

Scientists traced zinc pollution to car exhaust fumes and metal friction when cars brake, releasing zinc into the atmosphere. The study’s co-author, Dr Dominik Weiss, from Imperial's Department of Earth Science and Engineering, says:

"We need to know where these sources of pollution are coming from because exposure to zinc pollution over a long period of time is a significant concern for the health of residents in big cities such as Sao Paulo or London.”

The new method analyses zinc isotopes, which vary according to the pollution source. For instance, zinc isotopes in car exhaust are different from zinc isotopes coming out of industrial smoke stacks. The identity of these isotopes provides the clues to trace zinc pollution back to its source.

Dr Weiss says this technique for analysing isotopes could also be applied to tracing the sources of other metals such as cadmium, copper and thallium. He adds:

"Trace metals have a nasty way of bio-accumulating. They build up through the food chain with toxic consequences. Our new method could help policy makers find some more accurate answers about the true sources of metal pollution."

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk
http://pubs.acs.org/acs/journals/toc.page?incoden=ancham&indecade=0&involume=0&inissue=0

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>