Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for tracing metal pollution back to its sources

20.11.2008
A new way of pinpointing where zinc pollution in the atmosphere comes from could improve pollution monitoring and regulation, says research out this week in the journal Analytical Chemistry.

Imperial College London researchers say their work is a major breakthrough as current methods for analysing zinc pollution only measure pollution in the atmosphere; they do not trace it back to its source.

Researchers say their method will provide a new tool for policy makers and modellers. A better understanding of zinc pollution sources could inform and improve national and international pollution strategies.

At low levels, zinc is an essential mineral used by plants and animals.
But at higher levels, zinc pollution is suspected of causing cardiovascular, reproductive, immune, and respiratory problems.

Researchers trialled their method on atmospheric samples collected in Sao Paulo, Brazil. They worked in conjunction with researchers from the University of Sao Paulo who wanted to find out where zinc pollution comes from.

The analysis of air samples suggested that a major source of zinc in the city’s atmosphere comes from cars and not from manufacturers as previously thought.

Scientists traced zinc pollution to car exhaust fumes and metal friction when cars brake, releasing zinc into the atmosphere. The study’s co-author, Dr Dominik Weiss, from Imperial's Department of Earth Science and Engineering, says:

"We need to know where these sources of pollution are coming from because exposure to zinc pollution over a long period of time is a significant concern for the health of residents in big cities such as Sao Paulo or London.”

The new method analyses zinc isotopes, which vary according to the pollution source. For instance, zinc isotopes in car exhaust are different from zinc isotopes coming out of industrial smoke stacks. The identity of these isotopes provides the clues to trace zinc pollution back to its source.

Dr Weiss says this technique for analysing isotopes could also be applied to tracing the sources of other metals such as cadmium, copper and thallium. He adds:

"Trace metals have a nasty way of bio-accumulating. They build up through the food chain with toxic consequences. Our new method could help policy makers find some more accurate answers about the true sources of metal pollution."

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk
http://pubs.acs.org/acs/journals/toc.page?incoden=ancham&indecade=0&involume=0&inissue=0

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>