Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maya plumbing, first pressurized water feature found in New World

05.05.2010
A water feature found in the Maya city of Palenque, Mexico, is the earliest known example of engineered water pressure in the new world, according to a collaboration between two Penn State researchers, an archaeologist and a hydrologist. How the Maya used the pressurized water is, however, still unknown.

"Water pressure systems were previously thought to have entered the New World with the arrival of the Spanish," the researchers said in a recent issue of the Journal of Archaeological Science. "Yet, archaeological data, seasonal climate conditions, geomorphic setting and simple hydraulic theory clearly show that the Maya of Palenque in Chiapas, Mexico, had empirical knowledge of closed channel water pressure predating the arrival of Europeans."

The feature, first identified in 1999 during a mapping survey of the area, while similar to the aqueducts that flow beneath the plazas of the city, was also unlike them. In 2006, an archaeologist returned to Palenque with a hydrologist to examine the unusual water feature. The area of Palenque was first occupied about the year 100 but grew to its largest during the Classic Maya period 250 to 600. The city was abandoned around 800.

"Under natural conditions it would have been difficult for the Maya to see examples of water pressure in their world," said Christopher Duffy, professor of civil and environmental engineering. "They were apparently using engineering without knowing the tools around it. This does look like a feature that controls nature."

Underground water features such as aqueducts are not unusual at Palenque. Because the Maya built the city in a constricted area in a break in an escarpment, inhabitants were unable to spread out. To make as much land available for living, the Maya at Palenque routed streams beneath plazas via aqueducts.

"They were creating urban space," said Kirk French, lecturer in anthropology. "There are streams in the area every 300 feet or so across the whole escarpment. There is very little land to build on."

These spring-fed streams combined with approximately 10 feet of rain that falls during the six-month rainy season also presented a flooding hazard that the aqueducts would have at least partially controlled.

The feature the researchers examined, Piedras Bolas Aqueduct, is a spring-fed conduit located on steep terrain. The elevation drops about 20 feet from the entrance of the tunnel to the outlet about 200 feet downhill. The cross section of the feature decreases from about 10 square feet near the spring to about a half square foot where water emerges form a small opening. The combination of gravity on water flowing through the feature and the sudden restriction of the conduit causes the water to flow out of the opening forcefully, under pressure.

"The conduit could have reached a theoretical hydraulic head limit of 6 meters (about 20 feet)," said Duffy.

At the outlet, the pressure exerted could have moved the water upwards of 20 feet.

"The experience the Maya at Palenque had in constructing aqueducts for diversion of water and preservation of urban space may have led to the creation of useful water pressure," said French.

The Piedras Bolas Aqueduct is partially collapsed so very little water currently flows from the outlet. French and Duffy used simple hydraulic models to determine the potential water pressure achievable from the Aqueduct. They also found that Aqueduct would hold about 18,000 gallons of water if the outlet were controlled to store the water. One potential use for the artificially engineered water pressure would have been a fountain. The researchers modeled the aqueduct with a fountain as the outlet and found that even during flood conditions, water would flow in the aqueduct, supplying the fountain, and above ground in the channel running off the slope. Another possibility could be to use the pressure to lift water onto the adjacent residential area for use as wastewater disposal.

"The palace has features that suggest something similar," said French

The National Science Foundation and the Foundation for the Advancement of Mesoamerican Studies supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>