Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After mastodons and mammoths, a transformed landscape

23.11.2009
Roughly 15,000 years ago, at the end of the last ice age, North America's vast assemblage of large animals — including such iconic creatures as mammoths, mastodons, camels, horses, ground sloths and giant beavers — began their precipitous slide to extinction.

And when their populations crashed, emptying a land whose diversity of large animals equaled or surpassed Africa's wildlife-rich Serengeti plains then or now, an entirely novel ecosystem emerged as broadleaved trees once kept in check by huge numbers of big herbivores claimed the landscape. Soon after, the accumulation of woody debris sparked a dramatic increase in the prevalence of wildfire, another key shaper of landscapes.

This new picture of the ecological upheaval of the North American landscape just after the retreat of the ice sheets is detailed in a study published today (Nov. 19) in the journal Science. The study, led by researchers from the University of Wisconsin-Madison, uses fossil pollen, charcoal and dung fungus spores to paint a picture of a post-ice age terrain different from anything in the world today.

The work is important because it is "the clearest evidence to date that the extinction of a broad guild of animals had effects on other parts of these ancient ecosystems," says John W. Williams, a UW-Madison professor of geography and an expert on ancient climates and ecosystems who is the study's senior author. What's more, he says, the detailing of changes on the ice age landscape following the crash of keystone animal populations can provide critical insight into the broader effects of animals disappearing from modern landscapes.

The study was led by Jacquelyn Gill, a graduate student in Williams' lab. Other co-authors are Stephen T. Jackson of the University of Wyoming, Katherine B. Lininger of UW-Madison and Guy S. Robinson of Fordham University.

The new work, says Gill, informs but does not resolve the debate over what caused the extinction of 34 genera or groups of large animals, including icons of the ice age such as elephant like mastodons and ground sloths the size of sport utility vehicles. "Our data are not consistent with a rapid, 'blitzkrieg' overkill of large animals by humans," notes Gill, nor was their decline due to a loss of habitat.

However, the work does seem to rule out a recent hypothesis that a meteor or comet impact some 12.9 thousand years ago was responsible for the extinction of ice age North America's signature large animals.

The study was conducted using lake sediment cores obtained from Appleman Lake in Indiana, as well as data obtained previously by Robinson from sites in New York. Gill, Williams and their colleagues used pollen, charcoal and the spores of a dung fungus that requires passage through a mammalian intestinal tract to complete its life cycle to reconstruct a picture of sweeping change to the ice age environment. The decline of North America's signature ice age mammals was a gradual process, the Wisconsin researchers explain, taking about 1,000 years. The decline in the huge numbers of ice age animals is preserved in the fossil record when the fungal spores disappear from the record altogether: "About 13.8 thousand years ago, the number of spores drops dramatically. They're barely in the record anymore," Gill explains.

Like detectives reconstructing a crime scene, the group's use of dung fungus spores helps establish a precise sequence of events, showing that the crash of ice age megafauna began before plant communities started to change and before fires appeared widely on the landscape.

"The data suggest that the megafaunal decline and extinction began at the Appleman Lake site sometime between 14.8 thousand and 13.7 thousand years ago and preceded major shifts in plant community composition and the frequency of fire," notes Williams.

Absent the large herbivores that kept them in check, such tree species as black ash, elm and ironwood began to colonize a landscape dominated by coniferous trees such as spruce and larch. The resulting mix of boreal and temperate trees formed a plant community unlike any observed today.

"As soon as herbivores drop off the landscape, we see different plant communities," Gill explains, noting that mastodon herds and other large animals occupied a parkland like landscape, typified by large open spaces and patches of forest and swamp. "Our data suggest that these trees would have been abundant sooner if the herbivores hadn't been there to eat them."

While both the extinction of North America's ice age megafauna and the sweeping change to the landscape are well-documented phenomena, there was, until now, no detailed chronology of the events that remade the continent's biological communities beginning about 14.8 thousand years ago. Establishing that the disappearance of mammoths, giant beavers, ground sloths and other large animals preceded the massive change in plant communities, promises scientists critical new insight into the dynamics of extinction and its pervasive influence on a given landscape.

The new study was funded by the Wisconsin Alumni Research Foundation, the UW-Madison Center for Climatic Research in the Nelson Institute for Environmental Studies, and the National Science Foundation.

Terry Devitt, 608-262-8282, trdevitt@wisc.edu

John Williams | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>