Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After mastodons and mammoths, a transformed landscape

23.11.2009
Roughly 15,000 years ago, at the end of the last ice age, North America's vast assemblage of large animals — including such iconic creatures as mammoths, mastodons, camels, horses, ground sloths and giant beavers — began their precipitous slide to extinction.

And when their populations crashed, emptying a land whose diversity of large animals equaled or surpassed Africa's wildlife-rich Serengeti plains then or now, an entirely novel ecosystem emerged as broadleaved trees once kept in check by huge numbers of big herbivores claimed the landscape. Soon after, the accumulation of woody debris sparked a dramatic increase in the prevalence of wildfire, another key shaper of landscapes.

This new picture of the ecological upheaval of the North American landscape just after the retreat of the ice sheets is detailed in a study published today (Nov. 19) in the journal Science. The study, led by researchers from the University of Wisconsin-Madison, uses fossil pollen, charcoal and dung fungus spores to paint a picture of a post-ice age terrain different from anything in the world today.

The work is important because it is "the clearest evidence to date that the extinction of a broad guild of animals had effects on other parts of these ancient ecosystems," says John W. Williams, a UW-Madison professor of geography and an expert on ancient climates and ecosystems who is the study's senior author. What's more, he says, the detailing of changes on the ice age landscape following the crash of keystone animal populations can provide critical insight into the broader effects of animals disappearing from modern landscapes.

The study was led by Jacquelyn Gill, a graduate student in Williams' lab. Other co-authors are Stephen T. Jackson of the University of Wyoming, Katherine B. Lininger of UW-Madison and Guy S. Robinson of Fordham University.

The new work, says Gill, informs but does not resolve the debate over what caused the extinction of 34 genera or groups of large animals, including icons of the ice age such as elephant like mastodons and ground sloths the size of sport utility vehicles. "Our data are not consistent with a rapid, 'blitzkrieg' overkill of large animals by humans," notes Gill, nor was their decline due to a loss of habitat.

However, the work does seem to rule out a recent hypothesis that a meteor or comet impact some 12.9 thousand years ago was responsible for the extinction of ice age North America's signature large animals.

The study was conducted using lake sediment cores obtained from Appleman Lake in Indiana, as well as data obtained previously by Robinson from sites in New York. Gill, Williams and their colleagues used pollen, charcoal and the spores of a dung fungus that requires passage through a mammalian intestinal tract to complete its life cycle to reconstruct a picture of sweeping change to the ice age environment. The decline of North America's signature ice age mammals was a gradual process, the Wisconsin researchers explain, taking about 1,000 years. The decline in the huge numbers of ice age animals is preserved in the fossil record when the fungal spores disappear from the record altogether: "About 13.8 thousand years ago, the number of spores drops dramatically. They're barely in the record anymore," Gill explains.

Like detectives reconstructing a crime scene, the group's use of dung fungus spores helps establish a precise sequence of events, showing that the crash of ice age megafauna began before plant communities started to change and before fires appeared widely on the landscape.

"The data suggest that the megafaunal decline and extinction began at the Appleman Lake site sometime between 14.8 thousand and 13.7 thousand years ago and preceded major shifts in plant community composition and the frequency of fire," notes Williams.

Absent the large herbivores that kept them in check, such tree species as black ash, elm and ironwood began to colonize a landscape dominated by coniferous trees such as spruce and larch. The resulting mix of boreal and temperate trees formed a plant community unlike any observed today.

"As soon as herbivores drop off the landscape, we see different plant communities," Gill explains, noting that mastodon herds and other large animals occupied a parkland like landscape, typified by large open spaces and patches of forest and swamp. "Our data suggest that these trees would have been abundant sooner if the herbivores hadn't been there to eat them."

While both the extinction of North America's ice age megafauna and the sweeping change to the landscape are well-documented phenomena, there was, until now, no detailed chronology of the events that remade the continent's biological communities beginning about 14.8 thousand years ago. Establishing that the disappearance of mammoths, giant beavers, ground sloths and other large animals preceded the massive change in plant communities, promises scientists critical new insight into the dynamics of extinction and its pervasive influence on a given landscape.

The new study was funded by the Wisconsin Alumni Research Foundation, the UW-Madison Center for Climatic Research in the Nelson Institute for Environmental Studies, and the National Science Foundation.

Terry Devitt, 608-262-8282, trdevitt@wisc.edu

John Williams | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Earth Sciences:

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Study reveals significant role of dust in mountain ecosystems
07.12.2017 | University of Wyoming

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>